Lar

blog

APLICAÇÕES

  • Application and development of inertial heading reference system (AHRS) in modern navigation
    Application and development of inertial heading reference system (AHRS) in modern navigation Mar 24, 2025
      Key PointsProduct: Attitude and Heading Reference System (AHRS)Features:• Provides real-time attitude information (pitch, roll, yaw)• Uses gyroscopes, accelerometers, and magnetometers for sensor fusion• High precision and low latency for dynamic environments• Uses algorithms like Kalman filter and complementary filter for data fusion• Compact and lightweight, ideal for aerospace, marine, and autonomous applications Applications:• Aerospace: Monitors flight status and stability in aircraft and UAVs• Autonomous Vehicles: Ensures stable navigation in self-driving cars• Marine: Tracks attitude for underwater vehicles and submarines• AR/VR: Captures user head movements for immersive experiences Advantages:• High precision and reliability in real-time navigation• Reduces dependency on manual monitoring and traditional methods• Easily integrates with other navigation systems like GPS• Works in various environmental conditions (extreme temperatures, vibrations, etc.)• Low power consumption and efficient for extended use in dynamic settings   The Attitude and Heading Reference System (AHRS) is a device widely used in aerospace, unmanned vehicles, marine exploration, and other precision navigation fields. Its primary function is to provide real-time attitude information (such as pitch, roll, and yaw) by measuring the acceleration and angular velocity of the aircraft or spacecraft, enabling precise navigation and control.   1. Working Principle of AHRS The core components of AHRS typically include gyroscopes, accelerometers, and magnetometers. These sensors provide real-time data to sense the motion state of the vehicle. The gyroscope provides angular velocity information, the accelerometer measures acceleration, and the magnetometer helps calibrate the heading angle. In practical applications, AHRS needs to use sensor fusion algorithms to combine data from different sensors and provide accurate attitude estimation. Common algorithms include Kalman Filtering and Complementary Filtering. These algorithms help correct sensor errors and provide reliable heading and attitude information. 2. Attitude Estimation and Mathematical Model   One of the core tasks of AHRS is attitude estimation. Attitude refers to the orientation of an object relative to the Earth's reference coordinate system, usually represented by three angles: pitch, roll, and yaw. There is a close mathematical relationship between these angles and the output signals from inertial sensors. Let the accelerometer and angular velocity sensor outputs be represented by , and ,respectively. The estimation of attitude angles can be computed using the following formulas: (1)Relationship between Angular Velocity and Attitude AnglesThe change in attitude angles can be calculated from the angular velocity. The relationship between angular velocity and the rate of change of attitude angles is given by where represents the yaw (heading angle), pitch angle, and roll angle, and is the Jacobian matrix describing the mapping from angular velocity to attitude angles.   (2)Relationship between Acceleration and Attitude Angles For the acceleration data from the accelerometer ,the following equation combines the acceleration data with attitude angles:,whereis the rotation matrix that describes the rotation between the body frame and the world frame. This matrix allows the conversion of acceleration data from the world coordinate system to the body coordinate system. (3)Complementary Filter and Kalman Filter    In practice, AHRS systems use complementary filters or Kalman filters to fuse data from different sensors. The basic idea of complementary filtering is to leverage the low-frequency data from the accelerometer and the high-frequency data from the gyroscope to smooth the attitude estimation process and reduce noise. The formula for the complementary filter is: 1.Where   is the current estimated attitude, is the angular velocity from the gyroscope,  is the attitude estimated from the accelerometer,  is the fusion coefficient, and  is the time interval. The Kalman filter, on the other hand, uses prediction and update steps to optimize attitude estimation, providing more accurate results in dynamic environments. 3. Applications of AHRS With the continuous development of technology, the application fields of AHRS have expanded. Below are several typical applications: Aerospace: In aircraft, spacecraft, and unmanned aerial vehicles (UAVs), AHRS is one of the fundamental attitude navigation systems, used to monitor flight status in real-time and ensure the stability of the vehicle. Autonomous Vehicles: In autonomous cars, AHRS provides real-time attitude information to help the vehicle maintain stable motion, especially in complex environments where positioning and control are crucial. Marine Exploration: Submarines and underwater robots rely on AHRS to obtain attitude data for underwater navigation, ensuring proper heading and positioning. Augmented Reality and Virtual Reality: In AR/VR devices, AHRS is used to capture head movements of the user, enabling immersive experiences. 4. Future Development Trends With advancements in microelectronics, sensor technologies, and data processing capabilities, the performance and application prospects of AHRS systems continue to improve. In the future, AHRS is expected to make significant progress in the following areas: High-Precision Sensors: The next generation of high-precision, low-power sensors will further enhance the performance of AHRS, especially in harsh environments. Intelligent Algorithms: With the development of artificial intelligence, AHRS will implement more intelligent data fusion and attitude estimation algorithms, offering more precise navigation support. Multi-Sensor Fusion: In the future, AHRS will increasingly integrate with GPS, vision sensors, and other navigation technologies, forming a more comprehensive and reliable navigation system. 5. Conclusion   As a crucial component of navigation and positioning technologies, AHRS plays an increasingly important role in various fields. With the continuous advancement of technology, AHRS will provide stronger support for precise navigation, driving the development of automation and intelligence. By gaining a deeper understanding of AHRS’s working principles and its application prospects, we can better grasp the opportunities and challenges brought by this technology. A500 3 axis accelerometer+3 axis magnetometer+3 axis Gyro Digital Output RS232/485/CAN/TTL optional A5500 Imu Ahrs Ins Gnss Inertial Sensor for Agri Robot Competitive Price A5000 Tactical Grade Integrated Mems Accelerometer Gyroscope Magnetometer Altitude Heading Sensor AHRS for UAV drone    
  • Mechanical performance of gyroscope: the most important parameter
    Mechanical performance of gyroscope: the most important parameter Mar 24, 2025
    Key Points Product: High-Performance Gyroscopes Features: Accurate rotation rate measurement with low bias Compensation for temperature and vibration errors Zero bias stability as a key performance indicator Vibration sensitivity (g-sensitivity and g2-sensitivity) impacts performance Applications: Aerospace, automotive, industrial, and consumer electronics Advantages: High precision with temperature and vibration compensation Improved stability with multiple device averaging Anti-vibration components enhance performance Limitations: Vibration sensitivity is a major error source Zero bias stability may only be achievable in ideal conditions Mechanical impacts can affect performance   Summary: When choosing a gyroscope, it is necessary to consider minimizing the maximum error source. In most applications, vibration sensitivity is the largest source of error. Other parameters can be easily improved by calibration or taking the average of multiple sensors. Zero bias stability is one of the components with a smaller error budget.   When browsing high-performance gyroscope data manuals, the first element that most system designers focus on is the zero bias stability specification. After all, it describes the lower limit of the resolution of the gyroscope and is naturally the best indicator reflecting the performance of the gyroscope! However, actual gyroscopes may experience errors due to various reasons, making it impossible for users to obtain the high zero bias stability claimed in the data manual. Indeed, such high performance may only be achieved in the laboratory. The traditional method is to use compensation to minimize the impact of these error sources to the greatest extent possible. This article will discuss various such technologies and their limitations. Finally, we will discuss another alternative paradigm - selecting gyroscopes based on their mechanical performance and how to improve their bias stability if necessary.   Environmental error All mid to low price MEMS gyroscopes have a certain time zero bias and scaling factor error, and also undergo certain changes with temperature. Therefore, temperature compensation for gyroscopes is a common practice. Generally speaking, the purpose of integrating temperature sensors into gyroscopes is for this purpose. The absolute accuracy of the temperature sensor is not important, what is important is repeatability and the close coupling between the temperature sensor and the actual temperature of the gyroscope. The temperature sensor of modern gyroscopes can almost effortlessly meet these requirements.   Many techniques can be used for temperature compensation, such as polynomial curve fitting, piecewise linear approximation, etc. As long as a sufficient number of temperature points are recorded and sufficient measures are taken during the calibration process, the specific technique used is irrelevant. For example, insufficient storage time at each temperature is a common source of error. However, no matter what technology is used or how careful, temperature hysteresis - the difference in output between cooling and heating to a specific temperature - will be the limiting factor.   The temperature hysteresis loop of gyroscope ADXRS453 is shown in Figure 1. The temperature changes from+25 ° C to+130 ° C, then to -45 ° C, and finally back to+25 ° C, while recording the zero bias measurement results of the uncompensated gyroscope. There is a slight difference in the+25 ° C zero bias output between the heating cycle and the cooling cycle (approximately 0.2 °/s in this example), which is known as temperature hysteresis. This error cannot be eliminated through compensation, as it will occur regardless of whether the gyroscope is powered on or not. In addition, the magnitude of hysteresis is proportional to the amount of temperature "excitation" applied. That is to say, the wider the temperature range applied to the device, the greater the hysteresis. Figure 1. Zero bias output of uncompensated ADXRS453 during temperature cycling (-45 ° C to+130 ° C) If the application allows resetting the zero bias at startup (i.e. starting without rotation), or zeroing the zero bias on site, this error can be ignored. Otherwise, this may be a limiting factor for zero bias stability performance, as we cannot control transportation or storage conditions.   Anti-vibration In an ideal situation, a gyroscope only measures the rotation rate and has nothing else to do with it. However, in practical applications, due to asymmetric mechanical design and/or insufficient precision in microfabrication, all gyroscopes have a certain degree of acceleration sensitivity. In fact, acceleration sensitivity has various external manifestations, and its severity varies depending on the design. The most significant sensitivity is usually the sensitivity to linear acceleration (or g-sensitivity) and the sensitivity to vibration correction (or g2 sensitivity). Due to the fact that most gyroscopes are used in devices that move and/or rotate in a 1g gravity field around the Earth, sensitivity to acceleration is often the largest source of error.   Low cost gyroscopes generally adopt extremely simple and compact mechanical system designs, and their anti vibration performance has not been optimized (it optimizes cost), so vibration may cause serious impacts. It is not surprising that the g sensitivity is above 1000 °/h/g (or 0.3 °/s/g), which is more than 10 times higher than that of high-performance gyroscopes! For this type of gyroscope, the stability of zero bias is of little significance. A slight rotation of the gyroscope in the Earth's gravity field can cause significant errors due to its sensitivity to g and g2. Generally speaking, this type of gyroscope does not specify vibration sensitivity - it defaults to very high.   Some designers attempt to use external accelerometers to compensate for g-sensitivity (usually in IMU applications where the required accelerometer already exists), which can indeed improve performance in certain situations. However, due to various reasons, g sensitivity compensation cannot achieve complete success. The g-sensitivity of most gyroscopes varies with the frequency of vibration. Figure 2 shows the response of Silicon Sensing CRG20-01 gyroscope to vibration. Note that although the sensitivity of the gyroscope is within the rated specification range (slightly exceeding at some specific frequencies, which may not be important), the rate of change from DC to 100 Hz is 12:1, so calibration cannot be simply performed by measuring the sensitivity at DC. Indeed, the compensation plan will be very complex, requiring sensitivity to be changed according to frequency. Figure 2. g-sensitivity response of Silicon Sensing CRG20-01 to different sine tones Another difficulty is to match the phase response of the compensating accelerometer and gyroscope. If the phase response of the gyroscope and compensating accelerometer is not well matched, high-frequency vibration errors may actually be amplified! From this, another conclusion can be drawn: for most gyroscopes, g-sensitivity compensation is only effective at low frequencies. Vibration calibration is often not regulated, possibly due to embarrassing differences or significant differences between different components. It is also possible that it is simply because gyroscope manufacturers are unwilling to test or regulate (to be fair, testing may be difficult). Anyway, vibration correction must be taken into consideration as it cannot be compensated by an accelerometer. Unlike the response of an accelerometer, the output error of a gyroscope will be corrected.   The most common strategy to improve the sensitivity of g2 is to add a mechanical anti vibration component, as shown in Figure 3. The picture shows a Panasonic car gyroscope partially removed from the metal cap shell package. The gyroscope component is isolated from the metal cap by a rubber anti vibration component. Anti vibration components are very difficult to design because their response is not flat over a wide frequency range (especially poor at low frequencies), and their damping characteristics vary with temperature and usage time. Like sensitivity, the vibration correction response of a gyroscope may vary with frequency. Even if anti vibration components can be successfully designed to attenuate narrowband vibrations in a known frequency spectrum, such anti vibration components are not suitable for general applications where wideband vibrations may exist. Figure 3. Typical anti vibration components The main problems caused by mechanical abuse In many applications, routine short-term abuse events may occur, which, although not causing damage to the gyroscope, can result in significant errors. Here are a few examples. Some gyroscopes can withstand rate overload without exhibiting abnormal performance. Figure 4 shows the response of the Silicon Sensing CRG20 gyroscope to rate inputs that exceed the rated range by approximately 70%. The curve on the left shows the response of CRS20 when the rotation rate changes from 0 °/s to 500 °/s and remains constant. The curve on the right shows the response of the device when the input rate decreases from 500 °/s to 0 °/s. When the input rate exceeds the rated measurement range, the output oscillates randomly between tracks. Figure 4. Response of Silicon Sensing CRG-20 to 500 °/s rate input     Some gyroscopes exhibit a tendency to 'lock' even when subjected to impacts of only a few hundred grams. For example, Figure 5 shows the response of VTI SCR1100-D04 to a 250 g 0.5 ms impact (the method of generating the impact is to drop a 5 mm steel ball from a height of 40 cm onto the PCB next to the gyroscope). The gyroscope was not damaged due to impact, but it no longer responds to rate input and needs to be turned off and powered on again to restart. This is not a rare phenomenon, as various gyroscopes exhibit similar behavior. It is wise to check whether the proposed gyroscope can withstand the impact in the application. Figure 5. Response of VTI SCR1100-D04 to 250 g, 0.5 ms impact Obviously, such errors will be astonishingly large. Therefore, it is necessary to carefully identify potential abuse situations in a given application and verify whether the gyroscope can withstand them.   Selecting a new paradigm In error budgeting, zero bias stability is one of the smallest components, so when choosing a gyroscope, a more reasonable approach is to consider minimizing the maximum error source. In most applications, vibration sensitivity is the largest source of error. However, sometimes users may still desire lower noise or better zero bias stability than the selected gyroscope. Fortunately, we have a way to solve this problem, which is to take the average.   Unlike design related environmental or vibration errors, the zero bias stability error of most gyroscopes has noise characteristics. That is to say, the zero bias stability of different devices is not correlated. Therefore, we can improve the zero bias stability performance by taking the average of multiple devices. If n devices are averaged, the expected improvement is √ n. Broadband noise can also be improved by a similar averaging method.   Conclusion For a long time, zero bias stability has been regarded as the absolute standard for gyroscope specifications, but in practical applications, vibration sensitivity is often a more serious factor limiting performance. Choosing a gyroscope based on its anti-vibration capability is reasonable, as other parameters can be easily improved through calibration or averaging multiple sensors.   Appendix: Calculation of Errors Caused by Vibration To calculate the error caused by vibration in a given application, it is necessary to understand the expected amplitude of acceleration and the frequency at which this acceleration may occur. l  Running typically produces a peak of 2 grams, accounting for approximately 4% of the time. l  The vibration of the helicopter is quite stable. Most helicopter specifications are 0.4 g wideband vibration and 100% duty cycle. l  Ships (especially small boats) on turbulent waters can tilt up to ± 30 ° (producing ± 0.5 g of vibration). The duty cycle can be assumed to be 20%. l  For construction equipment such as leveling machines and front-end loaders, as long as their blades or buckets hit stones, they will produce a high g (50 g) and brief impact. The typical duty cycle value is 1%.   When calculating the error caused by vibration, it is necessary to consider the sensitivity of g and g2. Taking helicopter application as an example, the calculation is as follows: Error=[g sensitivity error]+[g2 sensitivity error] =[0.4 g x g sensitivity x 3600 s/h x 100%]+ [(0.4 g) 2 × g2 sensitivity × 3600 s/h × 100%] If the sensitivity of g is compensated by an accelerometer, only the sensitivity of g decreases, and the decrease is the compensation coefficient.   MG502 MG-502 HIGH PRECISION MEMS SINGLE AXIS GYROSCOPES   --
  • Analysis of Precision Index of Fiber Optic Gyroscope
    Analysis of Precision Index of Fiber Optic Gyroscope Mar 21, 2025
    Key Points Product: Fiber Optic Gyroscopes (FOGs) Features: • Highly accurate sensor for measuring angular velocity • Low bias stability (≤0.2 °/h), ensuring high measurement accuracy • Low random walk (ARW) for stable output over time (e.g., 0.001°/√h) • Scale factor accuracy (e.g., 10 ppm) with minimal deviation from actual rotation • Sensitive to temperature, vibration, and light source changes Applications: • Aviation: Provides accurate position, velocity, and attitude data for aircraft • Navigation: Assists in guidance and positioning systems • Seismic Research: Monitors rotational movement during earthquake studies • Military: Used in missile and bomb guidance systems Advantages: • High precision and stability • Low power consumption, easy installation and maintenance • Reliable in dynamic environments with minimal drift and noise • Versatile in various applications requiring precision angular velocity measurement     Fiber optic gyroscopes (FOGs) are highly accurate sensors used to measure angular velocity. They are widely used in fields such as aviation, navigation, and seismic research due to their high precision, sensitivity, and excellent stability. Its core accuracy indicators, including zero bias drift, random walk, and angle measurement error, are the key to evaluating its performance. Detailed explanation of core accuracy indicators Fiber optic gyroscope uses optical fibers as sensing elements to achieve accurate measurement of rotational angular velocity. Its accuracy performance can be comprehensively evaluated through the following three indicators:   (1)    Bias Stability (Drift Rate)   This indicator reflects the output accuracy of the gyroscope in a non rotating state, usually measured by a benchmark accuracy. The zero bias drift of fiber optic gyroscope is extremely low, generally not exceeding 0.2 °/h, ensuring high measurement accuracy.   (2)    Random Walk (Angular Random Walk, ARW)   This indicator measures the stability of the gyroscope output value over a period of time. typically measured in degrees per square root hour (°/√h). For example, the FOG has an ARW of 0.001°/√h. This means that the noise in the gyroscope's output accumulates at a rate of 0.001 degrees per square root of the operating time. (3)     Scale Factor Accuracy   The scale factor accuracy indicates how well the gyroscope's output corresponds to the actual angular velocity. It is usually expressed as a percentage error. For example, The FOG has a scale factor accuracy of 10 ppm (parts per million)**. This means that for every degree per second (°/s) of actual rotation, the gyroscope's output may deviate by up to 0.001%.   Analysis of Factors Affecting Accuracy The accuracy of fiber optic gyroscopes is influenced by various external factors: (1)    Temperature: The sensitive components of fiber optic gyroscopes are sensitive to changes in ambient temperature, which may lead to zero bias drift or increased angle measurement errors. (2)    Vibration: Environmental vibrations can have adverse effects on the accuracy of fiber optic gyroscopes, potentially leading to unstable output values. (3)   Light source: Changes in parameters such as power and wavelength of the light source may also affect the output value of the fiber optic gyroscope, thereby affecting its accuracy. Example of G-F3G70 manufactured by Micro-Magic the G-F3G70 fiber optic gyroscope inertial group is designed for medium and high precision application backgrounds. It adopts three-axis common technology and split design, with low cost and stable performance. The structure adopts optical path and circuit integrated packaging, with simple structure and easy installation. It can be used in navigation guidance, attitude measurement and control systems of small missiles and guided bombs. Main performance index of the fiber-optic gyroscope   G-F3G70-A G-F3G70-B G-F3G70-C Unit zero bias stability ≤0.050 (10s) ≤0.03 (10s ) ≤0.02 (10s) (°)/h Zero bias stability full temperature (1℃/min, 100s ) ≤0.15 ≤0.12 ≤0.10 (°)/h Zero bias repeatability ≤0.050 ≤0.03 ≤0.03 (°)/h Random walk coefficient ≤0.002 ≤0.002 ≤0.001 (º)/h1/2 Scale factor nonlinearity ≤20 ppm Scale factor asymmetry ≤20 ppm Scale factor repeatability ≤20 ppm Conclusion With its high precision advantage, fiber optic gyroscopes have been widely used in fields such as aviation, navigation, and earthquake research. For example, in aircraft, fiber optic gyroscopes can accurately determine the position, velocity, and attitude of the aircraft, ensuring stable and precise flight direction. In summary, as a high-precision measurement device, the performance of fiber optic gyroscope is affected by various factors, but it still shows great potential and value in various fields of application.       G-F3G70 Affordable price Dynamic Range 400 Deg/S Optic Fiber Gyroscopes China Leading Supplier    
  • How to choose a suitable inertial sensor
    How to choose a suitable inertial sensor Mar 21, 2025
    Key Points Product: Tilt Angle Monitoring Sensors Features: - Monitors tilt angles for large outdoor advertisements, infrastructure, and construction. - Enables real-time data transmission via GPRS for remote monitoring. - Solar-powered for independent operation, reducing the need for external power sources. - Provides high data credibility with minimal manpower required. - Offers low cost, easy installation, and maintenance. Applications: - Outdoor Advertising: Monitors tilt of large billboards and signs to ensure optimal display angles. - Infrastructure: Tracks tilt in bridges, buildings, and dams to detect any structural issues. - Construction: Monitors the tilt of heavy machinery during operation for safety and performance evaluation. Advantages: - High precision and real-time monitoring of tilt angles. - Reduces reliance on manual inspection and traditional methods of monitoring. - Easy integration into existing monitoring systems. - Low power consumption, environmentally-friendly design with solar-powered operation. - Reliable operation in various environmental conditions, including temperature and humidity.   Inertial measurement unit (IMU) is an integrated sensor kit that combines multiple accelerometers and gyroscopes to perform three-dimensional measurements of specific force and angular velocity relative to an inertial reference frame. However, in recent years, IMU has become a general term used to describe various inertial systems, including attitude heading reference systems (AHRS) and INS. IMU itself does not provide any type of navigation solution (position, velocity, attitude) . Normally, inertial sensors can be divided into the following three performance categories:   Marine-grade and Navigation-grade inertial navigation systems :     Marine-grade inertial navigation systems are the highest level of commercial sensors used on ships, submarines, and occasionally on spacecraft. This system can provide a non assisted navigation solution with drift less than 1.8 km/day. The cost of these sensors is as high as $1 million. The performance of navigation grade inertial navigation systems is slightly lower than that of Marine-grade inertial navigation systems, and is usually used for commercial and military aircraft. Its drift is less than 1.5km/h, and its price is as high as $100000. Tactical and industrial inertial sensors: Tactical and industrial grade sensors are the most diverse among these three types of sensors, capable of addressing various performance and cost situations, and their market opportunities are enormous. This category is used for many applications that require high-performance data to be obtained at a lower cost for mass production, commonly found in automatic lawnmowers, delivery robots, drones, agricultural robots, mobile industrial robots, and autonomous ships. Consumer grade sensors: In the commercial market, these sensors are usually sold in the form of separate accelerometers or gyroscopes. Many companies have started combining multiple accelerometers and gyroscopes from different manufacturers to create independent IMU units   Choosing the appropriate inertial sensor (such as accelerometer, gyroscope, magnetometer, or combined IMU/AHRS) requires comprehensive consideration of multiple factors including application scenarios, performance parameters, environmental conditions, and costs.   1. Clarify application requirements   Dynamic range: Determine the maximum acceleration or angular velocity that the sensor needs to measure (for example, a high range gyroscope is required for high-speed maneuvering of a drone). Accuracy requirements: High precision navigation (such as autonomous driving) requires sensors with low noise and low bias. Update frequency: High frequency vibration monitoring requires a sampling rate of>1kHz, while conventional motion tracking may only require 100Hz. Power consumption limit: Wearable devices require low power consumption (such as MEMS accelerometers with ± 10mg noise), while industrial devices can be relaxed. Integration method: Do you need IMU (6-axis) or AHRS (with attitude calculation).   2. Key performance parameters   Accelerometer: Range: ±2g (inclination measurement) to ±200g (impact detection). Noise density:  < 100μg/√ Hz (high precision) vs >500 μg/√Hz (low cost). Bandwidth: It needs to cover the highest frequency of the signal (e.g. mechanical vibration may require >500Hz).   Gyroscope: Zero bias stability: < 1°/h (fiber optic gyroscope) vs 10°/h (industrial MEMS) vs 1000 °/h (consumer grade). Angle random walk (ARW): <0.1°/√h (tactical level) vs 5°/√h (consumer level). Range: ±300°/s (conventional) to ±2000 °/s (high-speed rotation).   Magnetometer: Sensitivity: 0.1μT/LSB (high-precision navigation) vs 0.5μT/LSB (universal). Orthogonal error:  <1° (reduces the influence of soft iron interference).   3. Environmental adaptability   Temperature range: Industrial grade (-40°C~85°C) vs Consumer grade (0° C~70°C). Anti vibration/impact:  For example, automotive electronics need to pass a 5g RMS vibration test. Sealing:  IP67/IP68 protection level (outdoor or humid environment).   4. Interface and power consumption   Digital interfaces: SPI/I2C (embedded systems), CAN (automotive), UART (simple communication). Power supply voltage: 3.3V (low power consumption) vs 5V (industry standard). Power consumption: < 1mA (battery device) vs unlimited (wired power supply).   Micro-Magic Inc is a high-tech company specializing in the production, manufacturing, and research and development of automotive grade and industrial grade inertial sensors. The company's inertial sensor include various series of products such as accelerometers, gyroscopes, magnetometers, inclinometers, IMUs, VRUs, AHRS, and INS+GNSS integrated navigation. Over the years, The company's products have been widely used in various application fields, including automotive, aerospace, marine vessels, industrial automation, and medical equipment. The company's products have the characteristics of high precision, low power consumption, small size, and high reliability, and are widely used in fields such as attitude control, navigation systems, motion tracking, and vibration analysis. At the same time, Micro-Magic Inc are also committed to providing customized solutions for customers to meet the specific needs of different industries U6488 MEMS High Precision Digital Output IMU Sensor U7000 High Precision MEMS IMU U300-A Digital Output High Performance MEMS IMU Sensor  
  • How to Calibrate an Electronic Compass
    How to Calibrate an Electronic Compass Mar 21, 2025
    Key Points Product: Electronic Compass Principle of Calibration: - Magnetic field ellipse fitting: Collect magnetic field data in all directions while rotating the device, calculate hard iron interference and soft iron interference parameters, and apply compensation to fit the magnetic field data into a sphere for improved accuracy. Calibration Methods: 1. Plane calibration: - XY plane calibration: Rotate the device in the XY plane to find the center point of the trajectory circle projected in that plane. - XZ plane calibration: Rotate the device in the XZ plane to obtain the trajectory circle of the Earth's magnetic field and calculate the magnetic field interference vector in 3D space. 2. Stereoscopic 8-shaped calibration: - Rotate the device in various directions in the air to collect sample points that fall on the surface of a sphere. Determine the center of the circle to determine the interference value and perform calibration. Calibration Steps: 1. Preparation of testing environment: - Stay away from interference sources. - Ensure horizontal placement and stable installation. 2. Enter calibration mode: - Manually trigger calibration through key combinations or software instructions. - Auto prompt calibration when magnetic field anomalies are detected. 3. Perform calibration operation: - Horizontal rotation (2D calibration): Slowly rotate the device around the vertical axis in a horizontal position. - Three-dimensional rotation (3D calibration): Rotate the device around the X, Y, and Z axes, covering at least 360° for each axis. 4. Verify the calibration results: - Compare the device readings with a known geographic direction. - Use software tools to observe directional stability and accuracy. - Repeat calibration if deviation exceeds the nominal error of the device. Advantages of Electronic Compass: - Real-time heading and attitude measurement. - Crucial navigation tool. - Improves directional accuracy through calibration. - Various calibration methods available. - Can be used in different applications and environments.   Electronic compass is an important navigation tool that can provide real-time heading and attitude of moving objects. Calibration of an electronic compass is a crucial step in ensuring the accuracy of its directional measurement.   1. Calibration principle of electronic compass The electronic compass determines direction by measuring the components of the geomagnetic field. The calibration process is actually "magnetic field ellipse fitting": a) Collect magnetic field data  in all directions when the device rotates. b) Generate compensation parameters by calculating hard iron interference (fixed offset) and soft iron interference (scaling and cross coupling) through algorithms. c) Automatically apply compensation during subsequent measurements to fit the magnetic field data into a sphere centered at the origin, improving directional accuracy.   2. Calibration method for electronic compass The calibration methods for electronic compasses mainly include two methods: planar calibration and three-dimensional 8-shaped calibration. (1) Plane calibration method For the calibration of the XY axis, the device equipped with a magnetic sensor will rotate on its own in the XY plane, which is equivalent to rotating the Earth's magnetic field vector around the normal passing point O(γx,γy) perpendicular to the XY plane. It represents the trajectory of the magnetic field vector projected in the XY plane during the rotation process. This can find the position of the center of the circle as (Xmax+Xmin)/2, (Ymax+Ymin)/2. Similarly, rotating the device in the XZ plane can obtain the trajectory circle of the Earth's magnetic field on the XZ plane, which can calculate the magnetic field interference vector γ (γx, γy, γz) in three-dimensional space. After calibration, the electronic compass can be used normally on the horizontal plane. However, due to the angle between the compass and the horizontal plane, this angle can affect the accuracy of the heading angle and requires tilt compensation through acceleration sensors. (2) Stereoscopic 8-shaped calibration method Usually, when a device with sensors rotates in various directions in the air, the spatial geometric structure composed of measured values is actually a sphere, and all sampling points fall on the surface of this sphere, as shown in the following figure.‌                a) Aerial rotation:  Use calibrated equipment to perform an 8-shaped movement in the air, aiming for the normal direction of the equipment to point towards all 8 quadrants of space. By obtaining sufficient sample points, the center O(γx,γy,γz) is determined, which is the size and direction of the fixed magnetic field interference vector. b) Sample point collection:  When rotating the device in various directions in the air, the spatial geometric structure composed of measurement values is actually a sphere, and all sampling points fall on the surface of this sphere. By using these sample points, the center of the circle can be determined to determine the hard magnetic interference value and perform calibration.   3. Calibration steps for electronic compass (1) Preparation of testing environment Ø Stay away from interference sources: Ensure that there are no large metal objects (such as iron cabinets, vehicles), motors, speakers, or other electromagnetic equipment within 3 meters of the calibration environment. Ø Horizontal placement: Use a level or built-in sensor to adjust to a horizontal state, ensuring that the measurement is based on the horizontal component of the geomagnetic field. Ø Fixed method: Avoid wearing metal watches or rings when holding the device; If it is an embedded device (such as a drone), ensure a stable installation. (2) Enter calibration mode a) Manual triggering: Refer to the product manual, common methods include: n Key combination (such as long pressing the power and function keys for 5 seconds). n Software instructions (select 'Calibrate Compass' through the accompanying app). b) Auto prompt: Some devices automatically prompt calibration when detecting magnetic field anomalies (such as continuously displaying "low precision").   (3) Perform calibration operation a) Horizontal rotation (2D calibration): n Slowly rotate the equipment around the vertical axis (Z-axis) and keep it horizontal. n Ensure uniform rotation speed (about 10 seconds/turn), complete at least 2 turns to cover all directions. b) Three-dimensional rotation (3D calibration, suitable for high-precision equipment): n Rotate around the X (roll), Y (pitch), and Z (yaw) axes in sequence, with each axis rotating at least 360 °. n Example action: After horizontal rotation, flip the device upright and then tilt it back and forth. (4) Verify the calibration results a) Direction comparison method: Point the device towards a known geographic direction (such as using a compass to determine true north) and check if the readings match. b) Software validation: Use map apps or professional tools (such as magnetic field analysis software) to observe directional stability and accuracy. c) Repeat calibration: If the deviation exceeds the nominal error of the equipment (such as ±3°), recalibration and environmental interference inspection are required.   C9-B High Precision CAN Protocol Output 2D Electronic Compass C9-A 40° Tilt Angle Compensation CAN Protocol Output 3D Electronic Compass C9-C High Precision Digital Output 2D Electronic Compass Single Board  
  • Testing Methods for Several Key Indicators of Fiber Optic Gyroscope | Zero Bias Stability, Scale Factor Nonlinearity & RWC Analysis
    Testing Methods for Several Key Indicators of Fiber Optic Gyroscope | Zero Bias Stability, Scale Factor Nonlinearity & RWC Analysis Mar 21, 2025
    Explore comprehensive testing methods for fiber optic gyroscope key indicators, including zero bias stability, scale factor nonlinearity, and random walk coefficient (RWC). Learn step-by-step procedures, formulas, and equipment requirements for precision navigation and attitude control applications. Fiber optic gyroscope is based on Sagna effect and is widely used for measuring angular velocity in navigation and attitude control. Key indicators typically include zero bias stability, scaling factor, random walk, bandwidth, noise, temperature characteristics, and so on. By measuring these indicators, the performance of fiber optic gyroscopes can be comprehensively evaluated, and system design and compensation algorithms can be optimized based on these data.   1. Zero Bias Series Testing 1.1 Bias Definition: The average equivalent angular velocity output of a fiber optic gyroscope when there is no angular velocity input. Test Equipment: horizontal reference device, fiber optic gyroscope output measurement recording device. Test method: Fix the fiber optic gyroscope on a horizontal reference, with the input axis (IRA) pointing in the east-west direction. Record output data for at least 1 hour after power on, with a sampling frequency that meets the Nyquist criterion (≥ 2 times the highest frequency of the signal). Calculation formula:                 Where K is the scaling factor, is the average output value.   1.2 Bias Stability Definition: The degree of dispersion of zero bias output around the mean reflects short-term stability. Test method: Same as bias test, but requires long-term data recording (at least 1 hour). Calculation formula:                   where:  : Zero bias stability, measured in degrees per hour (° ⁄ h) :  The single-sided amplitude output of the fiber optic gyroscope  at time .   1.3 Bias Repeatability Definition: Perform multiple power tests to ensure consistency of zero bias. Test method: Repeat the zero-bias test for more than 6 times, with power off and cooling to room temperature at intervals between each test. Calculation formula: For each test data, process it according to formula (1), calculate the zero bias, and then calculate the zero-bias repeatability of Q tests according to the following formula.                        Where,   :  Zero bias of the i-th test; :  Zero bias   1.4 Bias Temperature Sensitivity Definition: Zero bias drift caused by temperature changes. Test method: Set different temperature points (covering the working temperature range) inside the temperature control box, and maintain a constant temperature for 30 minutes at each temperature point. Measure the zero bias at each temperature point and calculate the deviation from the room temperature zero bias. Calculation formula: The test data is processed according to formula (1), and the zero bias of the fiber optic gyroscope at room temperature and each test temperature point is calculated separately. The zero bias temperature sensitivity of the fiber optic gyroscope is calculated according to the following formula:                             :The i-th test temperature.  :room temperature   2. Scale Factor Series Testing 2.1  Scale Factor Definition: Linear proportional relationship between output signal and input angular velocity Test equipment: high-precision rate turntable (error<1/3 of the tested gyroscope index) Test method: Select ≥ 11 angular velocity points (including the maximum input angular velocity) uniformly in both forward and reverse directions. Record the mean output of each point and fit a straight line using the least squares method. Calculation formula: Let be the average output of the fiber optic gyroscope at the jth input angular velocity, and the scaling factor calculation method is as follows:                                               The linear model for establishing the input-output relationship of fiber optic gyroscope is as follows:                     Using the least squares method to calculate K,                               Where ∅ is the rotational speed of the speed turntable, measured in degrees per second (° ⁄ s)   2.2 Scale factor nonlinearity Definition: Output the maximum deviation relative to the fitted line. Calculation formula: According to the above method, the input-output relationship of the fiber optic gyroscope is represented by fitting a straight line as follows:               Calculate the point-by-point nonlinear deviation of the output characteristics of the fiber optic gyroscope according to the following formula:                   Calculate the scaling factor linearity according to the following formula, and create the nonlinear deviation curve of the fiber optic gyroscope output (the horizontal axis represents the input angular velocity, and the vertical axis represents the nonlinear deviation)                   2.3 Scale factor temperature sensitivity Test method: Test the scaling factor at different temperature points and calculate the deviation caused by temperature changes. Calculation formula: The test data is processed according to the calculation method of scale factor, and the scale factor of the fiber optic gyroscope at room temperature and each test temperature point is calculated separately. The temperature sensitivity of the scale factor is calculated according to the following formula:                 3. Random Walk Coefficient (RWC) Definition: Integral angular velocity error caused by white noise output. Test method: Short time (tens of seconds) high-frequency sampling, analyze Allan variance. Formula for calculating Allan variance: a) There are n initial sample data of fiber optic gyroscope output values obtained at the initial sampling interval time . According to the calculation formula for gyroscope zero bias, the output angular velocity of each fiber optic gyroscope output value is calculated to obtain the initial sample data of output angular velocity, as shown in the following formula:               b) For continuous data of n initial samples, k continuous data are grouped together, and the time length of the array is set to , where τ equals , 2 ,  Calculate the average value of the array data for each time length. c) Find the average difference between two adjacent arrays:           d) Calculate the variance of a set of random variables:   …… (17) Repeat the above process with different values of, and obtain a curve in the double logarithmic coordinate system, which is called the Allan variance curve. Using the Allan variance model below, the coefficients are obtained through least squares fitting, and then the random walk coefficient RWC is calculated:                   Conclusion: The key indicator testing of fiber optic gyroscope is a bridge connecting research and development with practical applications. By quantitatively verifying performance, ensuring reliability, and meeting standard compliance, it ensures its "precision, stability, and usability" in military and civilian high-precision fields, while laying the foundation for technological innovation and cost optimization. GF2X64 Dual-Axis Low Precision Fiber Optic Gyroscope GF-60 Medium and Low Precision  Fiber Optic Gyroscope GF3G90 Tri-Axis Fiber Optic Gyroscope    
  • Principle and Application of Fiber Optic Gyroscope North Finder
    Principle and Application of Fiber Optic Gyroscope North Finder Feb 21, 2025
      Key Points Fiber Optic Gyroscope North Finder   Pros: High accuracy, shock resistance, low power consumption, no external reference neededCons: Requires precise calibration, sensitive to driftBest for: Harsh environments, precision navigation applications Conclusion: Ideal for determining true north in challenging conditions, offering reliable performance without requiring latitude information.   The north finder is a type of compass used to find the true north direction value of a certain location. The gyroscope north finder, also known as the gyroscope compass, is an inertial measurement system that uses the principle of gyroscope to determine the projection direction of the Earth's rotational angular velocity on the local horizontal plane (i.e. true north position). Its search for north does not require external reference.   Principle of Fiber Optic Gyroscope North Finder Fiber Optic Gyroscope (FOG) is a new type of all solid-state gyroscope based on Sagnac effect. It is an inertial measurement element without mechanical rotating parts, with advantages such as shock resistance, high sensitivity, long lifespan, low power consumption, and reliable integration. It is an ideal inertial device in the new generation of strapdown inertial navigation systems.   In fiber optic gyroscope based north finding applications, the majority of methods used involve FOG rotation at a fixed angle and calculating the angle relative to the north direction by determining the offset. In order to accurately point north, it is also necessary to eliminate the drift of FOG. Generally, a rotating platform as shown in Figure 1 is used to place the fiber optic gyroscope on a moving base, with the plane of the moving base parallel to the horizontal plane and the sensitive axis of the fiber optic gyroscope parallel to the plane of the moving base. When starting to search north, the gyroscope is in position 1, and its sensitive axis is parallel to the carrier. Assuming that the angle between the initial direction of the sensitive axis of the fiber optic gyroscope and the true north direction is α. The output value of the gyroscope at position 1 is ω1; Then rotate the base 90° and measure the output value of the gyroscope at position 2 as ω2. Rotate 90° twice in sequence, turning to positions 3 and 4 respectively, to obtain angular velocities ω3 and ω4.    Assuming the latitude of the measurement point is φ,The Earth's rotation is  , The angular velocity measured at position 1 is: Where  is the zero drift of the gyroscope output. Similarly, it can be concluded that: In a short period of time, assuming that the drift of the fiber optic gyroscope is a constant, that is: , Then:   By using this method for measurement, the zero bias of the gyroscope can be eliminated, and there is no need to know the latitude value of the measurement location. If the latitude of the measurement location is a known value, then only measuring positions 1 and 3 (or 2 and 4) can determine the heading angle.   Conclusion The fiber optic gyroscope north finder has a simple structure and excellent performance, especially able to resist impacts and various harsh environments. When the turntable is horizontal, it can provide the angle between the carrier and true north direction without inputting latitude values. In the case where the turntable is not strictly horizontal, the Earth's angular velocity measured by fiber optic gyroscope and the angle between the gyroscope and the horizontal plane measured by accelerometer are also used to calculate the angle between the baseline of the carrier and the true north direction through computer calculation. At the same time, the accelerometer can also measure the attitude angle of the north finder.   NF2000 inertial navigation system High Precision FOG North Seeker   NF3000 Inertial Navigation System High Performance Dynamic Fog North Seeker  
  • Should I choose quartz flexible accelerometer or MEMS accelerometer?
    Should I choose quartz flexible accelerometer or MEMS accelerometer? Feb 21, 2025
    Key Points Quartz Accelerometer Pros: High accuracy, stable, wide range, robust Cons: Larger, expensive, high power Best for: Precision applications (e.g., aerospace) MEMS Accelerometer Pros: Compact, low cost, low power Cons: Lower accuracy, limited range Best for: Consumer electronics, portable devices Conclusion Quartz: For high precision MEMS: For cost-effective, compact solutions Choosing between a quartz flexible accelerometer and a MEMS accelerometer depends on specific application requirements. Here are some key factors to consider:   1.       Quartz Flexible Accelerometer Advantages: 1)      High Accuracy and Stability: Quartz accelerometers are known for their high precision and long-term stability, making them suitable for applications requiring precise measurements over extended periods. 2)      Wide Dynamic Range: They can measure a wide range of accelerations, from very low to very high. 3)      Robustness: They are generally robust and can operate in harsh environments, including high temperatures and high vibration conditions. 4)      Low Noise: They typically have low noise levels, which is crucial for sensitive measurements.   Disadvantages: 1)      Size and Weight: Quartz accelerometers are generally larger and heavier compared to MEMS accelerometers. 2)      Cost: They are usually more expensive due to the complex manufacturing process and high-quality materials. 3)      Power Consumption: They tend to consume more power, which might be a concern for battery-operated devices.   2.       MEMS Accelerometer Advantages: 1)      Compact Size: MEMS accelerometers are small and lightweight, making them ideal for applications where space and weight are critical, such as in consumer electronics and portable devices. 2)      Low Cost: They are generally less expensive to produce, making them cost-effective for high-volume applications. 3)      Low Power Consumption: MEMS accelerometers consume less power, which is beneficial for battery-powered devices. 4)      Integration: They can be easily integrated with other electronic components on a single chip, enabling multifunctional devices.   Disadvantages: 1)      Lower Accuracy: MEMS accelerometers may have lower accuracy and stability compared to quartz accelerometers, especially over long periods. 2)      Limited Dynamic Range: They may not perform as well in measuring very high or very low accelerations. 3)      Environmental Sensitivity: They can be more sensitive to environmental factors such as temperature and vibration, which might affect performance.   3.       Application Considerations Ø  High-Precision Applications: If your application requires high precision, stability, and wide dynamic range (e.g., aerospace, defense, or seismic monitoring), a quartz flexible accelerometer might be the better choice. Ø  Consumer Electronics: For applications where size, weight, cost, and power consumption are critical (e.g., smartphones, wearables, IoT devices), a MEMS accelerometer is likely more suitable.   4.       Performance comparison Micro-Magic Inc provides a series of high-precision quartz accelerometers and a series of MEMS accelerometers. Taking quartz accelerometer AC-5B and MEMS accelerometer ACM-300-8 as examples, some typical parameter comparisons are as follows: Parameters AC-5 ACM-300 Measuring range ±50 g ±8 g Resolution <5μg <5 mg Bias <7 mg <50 mg Bias thermal coefficient < ±30μg/℃ 0.5 mg/℃ Scale factor thermal coefficient <50 ppm/℃ 100 ppm/℃ Bandwidth >300Hz 0~400 Hz   5.       Conclusion   Choose Quartz Flexible Accelerometer for high-precision, high-stability applications where size, weight, and cost are less critical. Choose MEMS Accelerometer for compact, cost-effective, low-power applications where high precision is not the primary concern. ACM-300 High Performance Industry Current type MEMS Accelerometer Sensor Factory   AC-5 Large Measurement Range 50g Quartz Pendulum Accelerometer Quartz Flex Accelerometer    
  • Por que é chamado de giroscópio de fibra óptica?
    Por que é chamado de giroscópio de fibra óptica? Jan 14, 2025
    Pontos-chaveProduto: Giroscópio de fibra óptica (FOG)Principais recursos:Componentes: Sensor de estado sólido usando fibra óptica para medições inerciais precisas.Função: Aproveita o efeito SAGNAC para detecção precisa da taxa angular sem peças móveis.Aplicações: Adequado para IMUs, INS, buscadores de mísseis, UAVs e robótica.Fusão de dados: combina dados FOG com referências externas para aumentar a precisão e a estabilidade.Conclusão: Os FOGs proporcionam alta precisão e confiabilidade nas tarefas de navegação, com desenvolvimentos futuros promissores em vários setores.Assim como o giroscópio a laser em anel, o giroscópio de fibra óptica tem as vantagens de não ter peças mecânicas móveis, sem tempo de pré-aquecimento, aceleração insensível, ampla faixa dinâmica, saída digital e tamanho pequeno. Além disso, o giroscópio de fibra óptica também supera as deficiências fatais do giroscópio a laser em anel, como alto custo e fenômeno de bloqueio.O giroscópio de fibra óptica é um tipo de sensor de fibra óptica usado na navegação inercial.Porque não possui partes móveis – rotor de alta velocidade, chamado giroscópio de estado sólido. Este novo giroscópio totalmente sólido se tornará o produto líder no futuro e tem uma ampla gama de perspectivas de desenvolvimento e aplicações.1. Classificação do giroscópio de fibra ópticaDe acordo com o princípio de funcionamento, o giroscópio de fibra óptica pode ser dividido em giroscópio de fibra óptica interferométrica (I-FOG), giroscópio de fibra óptica ressonante (R-FOG) e giroscópio de fibra óptica de espalhamento Brillouin estimulado (B-FOG). Atualmente, o giroscópio de fibra óptica mais maduro é o giroscópio interferométrico de fibra óptica (ou seja, a primeira geração de giroscópio de fibra óptica), que é o mais utilizado. Ele usa bobina de fibra óptica multivoltas para aumentar o efeito SAGNAC. Um interferômetro de anel de feixe duplo composto por bobina de fibra óptica monomodo multivoltas pode fornecer alta precisão, mas também inevitavelmente tornará a estrutura geral mais complicada.Os giroscópios de fibra óptica são divididos em giroscópios de fibra óptica de anel aberto e giroscópios de fibra óptica de circuito fechado de acordo com o tipo de loop. Giroscópio de fibra óptica de circuito aberto sem feedback, detecta diretamente a saída óptica, economiza muitas estruturas ópticas e de circuito complexas, tem as vantagens de estrutura simples, preço barato, alta confiabilidade, baixo consumo de energia, a desvantagem é que a linearidade de entrada-saída é ruim , pequena faixa dinâmica, usada principalmente como sensor de ângulo. A estrutura básica de um giroscópio interferométrico de fibra óptica de circuito aberto é um interferômetro de feixe duplo em anel. É usado principalmente em ocasiões onde a precisão não é alta e o volume é pequeno.2. Status e futuro do giroscópio de fibra ópticaCom o rápido desenvolvimento do giroscópio de fibra óptica, muitas grandes empresas, especialmente empresas de equipamentos militares, investiram enormes recursos financeiros para estudá-lo. As principais empresas de pesquisa dos Estados Unidos, Japão, Alemanha, França, Itália, Rússia, giroscópio de baixa e média precisão concluíram a industrialização, e os Estados Unidos mantiveram uma posição de liderança nesta área de pesquisa.O desenvolvimento do giroscópio de fibra óptica ainda está relativamente atrasado em nosso país. De acordo com o nível de desenvolvimento, o desenvolvimento do giroscópio é dividido em três escalões: o primeiro escalão são os Estados Unidos, o Reino Unido, a França, eles têm todas as capacidades de pesquisa e desenvolvimento de giroscópio e navegação inercial; O segundo nível é composto principalmente pelo Japão, Alemanha, Rússia; A China está atualmente no terceiro nível. A pesquisa do giroscópio de fibra óptica na China começou relativamente tarde, mas com os esforços da maioria dos pesquisadores científicos, diminuiu gradualmente a distância entre nós e os países desenvolvidos.Atualmente, a cadeia da indústria do giroscópio de fibra óptica da China está completa e os fabricantes podem ser encontrados a montante e a jusante da cadeia da indústria, e a precisão do desenvolvimento do giroscópio de fibra óptica atingiu os requisitos de precisão média e baixa do sistema de navegação inercial. Embora o desempenho seja relativamente ruim, ele não causará gargalos como o chip.O desenvolvimento futuro do giroscópio de fibra óptica se concentrará nos seguintes aspectos:(1) Alta precisão. Maior precisão é um requisito inevitável para que o giroscópio de fibra óptica substitua o giroscópio a laser na navegação avançada. Atualmente, a tecnologia de giroscópio de fibra óptica de alta precisão não está totalmente madura.(2) Alta estabilidade e anti-interferência. A alta estabilidade de longo prazo também é uma das direções de desenvolvimento do giroscópio de fibra óptica, que pode manter a precisão da navegação por um longo tempo em ambientes adversos é o requisito do sistema de navegação inercial para o giroscópio. Por exemplo, no caso de alta temperatura, forte terremoto, forte campo magnético, etc., o giroscópio de fibra óptica também deve ter precisão suficiente para atender aos requisitos dos usuários.(3) Diversificação de produtos. É necessário desenvolver produtos com diferentes precisões e diferentes necessidades. Diferentes usuários têm diferentes requisitos de precisão de navegação, e a estrutura do giroscópio de fibra óptica é simples, e apenas o comprimento e o diâmetro da bobina precisam ser ajustados ao alterar a precisão. Nesse aspecto, tem a vantagem de superar o giroscópio mecânico e o giroscópio a laser, e seus diversos produtos de precisão são mais fáceis de alcançar, o que é o requisito inevitável da aplicação prática do giroscópio de fibra óptica.(4) Escala de produção. A redução de custos também é uma das condições para que o giroscópio de fibra óptica seja aceito pelos usuários. A escala de produção de vários componentes pode efetivamente promover a redução dos custos de produção, especialmente para giroscópios de fibra óptica de média e baixa precisão.3. ResumoA estabilidade de polarização zero do giroscópio de fibra óptica F50 é de 0,1 ~ 0,3º/h, e a estabilidade de polarização zero do F60 é de 0,05 ~ 0,2º/h. Seus campos de aplicação são basicamente os mesmos e podem ser usados em pequenos IMU, INS, servo rastreamento de mísseis, pod fotoelétrico, UAV e outros campos de aplicação. Se desejar mais dados técnicos, não hesite em contactar-nos.GF50Giroscópio de fibra óptica padrão militar de precisão média de eixo único GF60Taxa angular Imu do giroscópio da fibra ótica da baixa potência do giroscópio da fibra da única linha central para a navegação 
  • O que é MEMS INS auxiliado por GNSS e como funciona?
    O que é MEMS INS auxiliado por GNSS e como funciona? Jan 14, 2025
    Pontos-chaveProduto: I3500 MEMS INS Auxiliado por GNSSPrincipais recursos:Componentes: MEMS IMU econômico, módulo de posicionamento por satélite com antena dupla, magnetômetros e barômetro.Função: Fornece dados de navegação de alta precisão, mantendo o desempenho durante interrupções do GNSS.Aplicações: Adequado para drones, navegação autônoma, levantamento topográfico e análise de movimento.Navegação Inercial: Combina medições inerciais para cálculo de posição, velocidade e atitude.Conclusão: O I3500 exemplifica a integração de MEMS INS e GNSS, melhorando a confiabilidade e a precisão da navegação em vários setores. A navegação integrada MINS/GNSS refere-se à fusão de informações do MINS (MEMS INS) e do GNSS (Global Navigation Satellite System). Esta integração combina os pontos fortes de ambos os sistemas para se complementarem e alcançarem resultados precisos de PVA (Posição, Velocidade, Atitude).Classificação de Sistemas de Navegação Inercial MEMSApós mais de 30 anos de desenvolvimento, a tecnologia inercial MEMS avançou rapidamente e teve ampla aplicação. Vários dispositivos inerciais MEMS práticos e MEMS INS surgiram, sendo amplamente utilizados em áreas como as indústrias aeroespacial, marítima e automotiva. Giroscópios MEMS de nível tático (com estabilidade de polarização de 0,1°/h a 10°/h, 1σ) e acelerômetros MEMS de alta precisão (com estabilidade de polarização de 10⁻⁵g a 10⁻⁶g, 1σ) marcaram a entrada do tático- classificar o MEMS INS no estágio de aplicação do modelo.Geralmente, os sistemas inerciais MEMS podem ser classificados em três níveis: Conjunto de Sensores Inerciais (ISA), Unidade de Medição Inercial (IMU) e Sistema de Navegação Inercial (INS), conforme ilustrado na Figura 1.Fig.1 Três níveis de Mems Ins (2)MEMS ISA: Composto apenas por três giroscópios MEMS e três acelerômetros MEMS, não possui a capacidade de operar de forma independente.MEMS IMU: Baseia-se no MEMS ISA adicionando conversores A/D, chips de processamento matemático e programas específicos, permitindo coletar e processar informações inerciais de forma independente.MEMS INS: expande ainda mais o MEMS IMU incorporando transformação de coordenadas, processos de filtragem e módulos auxiliares, que normalmente incluem magnetômetros e placas receptoras GNSS. Sensores auxiliares como magnetômetros são particularmente significativos para auxiliar no alinhamento do MEMS INS e melhorar o desempenho.Os três modelos MEMS INS (Micro-Magic Inc-Mechanical System Inertial Navigation System) recentemente lançados pela Ericco, mostrados na imagem abaixo, são adequados para aplicações em drones, gravadores de voo, veículos não tripulados inteligentes, posicionamento e orientação de leitos de estradas, detecção de canais, veículos de superfície não tripulados e veículos subaquáticos.Fig.2 Os três modelos Mems Ins recém-lançados por EriccoComo funciona o MEMS INS auxiliado por GNSSO GNSS fornece aos usuários informações de posição e tempo absolutas de alta precisão e para qualquer clima, enquanto os sistemas de navegação inercial (INS) oferecem alta resolução de curto prazo e forte autonomia. Suas características complementares melhoram o desempenho geral: o INS pode aproveitar sua alta precisão de curto prazo para fornecer ao GNSS informações de navegação mais contínuas e completas, enquanto o GNSS pode ajudar a estimar parâmetros de erro do INS, como polarização, obtendo assim observações mais precisas e reduzindo o desvio do INS.Fig.3 Três níveis de Mems InsEspecificamente, o GNSS usa sinais de satélites em órbita para calcular posição, tempo e velocidade. Contanto que a antena tenha uma conexão de linha de visão com pelo menos quatro satélites, a navegação GNSS alcança excelente precisão. Quando a visibilidade do satélite é obstruída por obstáculos como árvores ou edifícios, a navegação torna-se pouco fiável ou impossível.O INS calcula mudanças de posição relativa ao longo do tempo usando informações de taxa angular e aceleração da unidade de medição inercial (IMU). A IMU é composta por seis sensores complementares dispostos em três eixos ortogonais. Cada eixo possui um acelerômetro e um giroscópio. Os acelerômetros medem a aceleração linear, enquanto os giroscópios medem a taxa de rotação. Com estes sensores, a IMU pode medir com precisão o seu movimento relativo no espaço 3D.O INS usa essas medidas para calcular a posição e a velocidade. Outra vantagem das medições IMU é que elas fornecem soluções angulares em torno dos três eixos. O INS converte essas soluções angulares em atitudes locais (rolamento, inclinação e guinada), fornecendo esses dados juntamente com a posição e a velocidade.Fig.4 O Sistema de Coordenadas Corporais da Unidade de Medição InercialReal-Time Kinematic (RTK) é um algoritmo de posicionamento GNSS maduro e de alta precisão, capaz de atingir precisão de nível centimétrico em ambientes abertos. No entanto, em ambientes urbanos complexos, obstruções e interferências de sinal reduzem a taxa de fixação de ambiguidade, levando à diminuição da capacidade de posicionamento. Portanto, pesquisar sistemas de posicionamento integrados GNSS RTK e INS é crucial para áreas como navegação autônoma, levantamento e mapeamento e análise de movimento.O I3500 recém-lançado pela Micro-Magic Inc é um MEMS INS auxiliado por GNSS de baixo custo com um MEMS IMU altamente confiável e um módulo de satélite direcional e posicionamento de banda completa de sistema completo com antena dupla. Também integra magnetômetros e um barômetro, que podem calcular o tamanho do ângulo de atitude e ajudar o drone a navegar até a altitude desejada.ConclusãoA integração dos Sistemas de Navegação Inercial MEMS (INS) com a tecnologia GNSS aumenta significativamente a precisão da navegação, combinando seus pontos fortes. MEMS INS, com seu rápido avanço, é agora amplamente utilizado nas indústrias aeroespacial, marítima e automotiva. O GNSS fornece posicionamento preciso, enquanto o MEMS INS garante navegação contínua, mesmo durante interrupções do GNSS.O I3500 da Micro-Magic Inc exemplifica essa integração, oferecendo dados de navegação de alta precisão, ideais para navegação autônoma, levantamento topográfico e análise de movimento.Em resumo, a integração GNSS e MEMS INS revoluciona a navegação, melhorando a precisão, a confiabilidade e a versatilidade em diversas aplicações. I3500Sistema de navegação inercial Mems Gyro I3500 de 3 eixos de alta precisão  
  • A estrutura interna do localizador norte
    A estrutura interna do localizador norte Jan 14, 2025
    Pontos-chaveProduto: Sistema de navegação inercial North FinderPrincipais recursos:Componentes: Usa giroscópios e acelerômetros para fornecer medições inerciais precisas para funcionalidade de busca ao norte.Função: Determina com rapidez e precisão a direção norte em todas as condições climáticas, independente de sinais externos.Aplicações: Adequado para usos militares e civis que exigem orientação autônoma e resistente a interferências.Processamento de dados: Possui software avançado para coleta, processamento e correção de erros de atitude de dados de sensores.Modularidade: O software é modular para facilitar o desenvolvimento, testes e manutenção, permitindo atualizações flexíveis do sistema.O aparecimento do localizador norte é uma conquista importante no desenvolvimento da tecnologia de navegação inercial. É amplamente utilizado nos campos militar e civil, configurando sensores inerciais para formar um sistema de medição inercial de precisão, que pode detectar com precisão os parâmetros de posição relevantes do transportador e fornecer vários recursos de informação, como posição coordenada, orientação e atitude do transportador com outros equipamentos.O North Finder é um instrumento inercial, possui as vantagens gerais dos instrumentos inerciais, ou seja, utiliza o princípio de funcionamento da inércia, não depende de informações externas durante o trabalho, não irradia energia para o exterior, não estará sujeito à interferência inimiga no trabalho, não estará sujeito a substâncias de campo magnético e outras interferências ambientais, boa resistência ambiental, no desempenho ambiental de alta e baixa temperatura superior, é um sistema indicador de orientação autônomo. Ele pode determinar o norte com rapidez e precisão em um ambiente para qualquer clima.No hardware do localizador norte, a saída do sinal do sensor do giroscópio e do acelerômetro é filtrada, controlada e amplificada, e o sinal analógico é convertido em sinal digital pelo conversor A/D para o computador de controle do sistema de busca norte para cálculo e processamento.Pode-se dizer que o software do North Finder é a alma do sistema, sem o controle do software, o hardware do sistema é praticamente inútil e não consegue reproduzir seu desempenho. A parte do software controla o hardware de todo o sistema, define o valor inicial, coleta dados regularmente, interface de interação homem-computador e fornece interface serial e interface de comunicação de rede para realizar a troca de dados com o mundo exterior.O conteúdo principal do software north finder inclui duas partes: uma é o software de gerenciamento, que faz o hardware funcionar de acordo com o programa pré-determinado, como a inicialização de cada parte, o gerenciamento de interrupções no processo em execução, o gerenciamento de comunicação entre o sistema e a conexão externa; O segundo é o software de processamento de dados, que amostra as informações de cada sensor e processa os dados amostrados para evitar a saída do resultado da localização do norte.Suas principais tarefas são: 1. Inicialização do sistema: incluindo a seleção da posição inicial do sistema, o julgamento de fechamento de feedback do giroscópio, inicialização da amostragem A/D e assim por diante.2. Controle de transferência do sistema: o software controla o motor para girar de acordo com a posição predeterminada.3. Processamento de dados: amostragem A/D e pré-processamento de dados; Cálculo da matriz de atitude e correção de erros; Exibição e saída, etc. Essas tarefas estão interligadas no tempo e dependem do gerenciamento de interrupções para coordená-las.No projeto do North Finder, seguimos o princípio básico da modularidade, o programa é dividido em vários módulos, cada módulo define uma função, e então esses módulos juntos para formar um todo podem completar a função especificada. As vantagens de desenvolver módulos com funções independentes e sem muita interação entre módulos são mostradas principalmente em: primeiro, o software de implementação modular é relativamente fácil de desenvolver. Em segundo lugar, os módulos independentes são fáceis de testar e manter e podem ser facilmente modificados, substituídos ou inseridos em novos módulos quando necessário.A empresa Micro-Magic Inc na fabricação do localizador norte dominou a tecnologia qualificada, no software e hardware interno do sistema de navegação, a seleção da Micro-Magic Inc são componentes inerciais econômicos e de alto desempenho, atualmente possui um novo tipo de localizador norte diferente do tradicional buscador do norte, é o nosso NF2000, se você estiver interessado nisso, entre em contato com nossa equipe profissional. NF2000Sistema de navegação inercial Fog North Seeker de alta precisão  
  • Inovação técnica do localizador norte na perfuração direcional
    Inovação técnica do localizador norte na perfuração direcional Jan 14, 2025
    Pontos-chaveProduto: NF1000 Gyro North FinderPrincipais recursos:Componentes: Utiliza um giroscópio e um acelerômetro flexível de quartzo em um sistema de amarração para medição precisa do azimute.Função: Fornece orientação e busca do norte em tempo real e sob qualquer condição climática, calculando o azimute e o ângulo de inclinação para aplicações como perfuração direcional.Aplicações: Ideal para operações militares, exploração de petróleo e gás e projetos de engenharia em espaços confinados.Design compacto: Tamanho: Φ31,8 x 85 mm, Peso: 400g, oferecendo maior portabilidade e adaptabilidade.Desempenho: Recursos avançados como compensação de inclinação e autoalinhamento garantem orientação precisa e confiável em ambientes difíceis.Conclusão: O NF1000 oferece busca e orientação rápida e precisa do norte, tornando-o uma ferramenta valiosa para perfuração direcional, navegação militar e outras aplicações de engenharia.Na orientação militar e civil, o localizador norte é amplamente utilizado. Ele pode determinar o norte de forma estática para todos os climas, em todas as direções, rápido e em tempo real, de modo a determinar o azimute da transportadora, ou seja, o ângulo entre um eixo de referência da transportadora e a direção norte verdadeira, que é usado como referência de azimute para observação, mira e reinicialização do sistema de navegação. Ele também pode ser usado como referência para operações subterrâneas, como túneis e minas em aplicações militares, exigindo especialmente que o localizador giroscópio norte obtenha orientação rápida e precisa em um curto espaço de tempo.1.Princípios básicos da descoberta do norteO localizador do norte usa o giroscópio para calcular o ângulo entre a transportadora e a direção norte verdadeira. Este sistema usa um giroscópio e um acelerômetro flexível de quartzo para formar um sistema de amarração. O eixo sensível de um acelerômetro é paralelo ao eixo sensível do giroscópio. O outro é ao longo do plano horizontal giroscópio ortogonal e acelerômetro para formar um conjunto inercial em relação à base de instalação em torno do eixo vertical de acordo com o comando do sistema de controle rotação do conjunto em torno da rotação do eixo vertical duas posições podem ser resolvidas para medir o aceleração azimutal do conjunto inercial para compensar o componente vertical da velocidade angular de rotação da Terra.2. Tecnologia de perfuração de petróleoA perfuração e o desenvolvimento de petróleo são uma indústria de alto investimento, alto risco, alto retorno, tecnologia intensiva e capital intensivo, erros de tomada de decisão ou operacionais causarão enormes perdas económicas e sociais.Com a melhoria do nível de exploração de petróleo e gás em terra e no mar, os tipos de reservatórios de petróleo e gás tornaram-se complicados e diversificados, a proporção de reservatórios de petróleo e gás de permeabilidade baixa e ultrabaixa aumentou ano a ano, e o a profundidade do poço evoluiu de raso e médio profundo para profundo e até ultraprofundo. Os tipos de reservatórios de petróleo e gás são estendidos do convencional ao não convencional. O tipo sedimentar expandiu-se de continental para marinho. O trabalho de exploração e desenvolvimento entrou na fase de baixo, profundo e difícil, o que coloca novos desafios à exploração de petróleo e gás. Neste caso, o uso contínuo da tecnologia de poço vertical não atenderá às necessidades da perfuração moderna, então surgiu a tecnologia de perfuração direcional.A perfuração direcional sempre foi considerada “o processo e a ciência de desviar um poço em uma direção específica para perfurar até um alvo subterrâneo predeterminado”. Conforme mostrado pelo localizador norte direcional de perfuração, o ângulo de azimute e o ângulo de inclinação são dois parâmetros-chave para o posicionamento do furo de perfuração. Os principais índices de desempenho do giroscópio e do acelerômetro podem ser testados e calibrados automaticamente usando o software giroscópio localizador norte.Durante a construção da perfuração, a plataforma de perfuração chega ao local de perfuração designado. De acordo com o azimute e o ângulo de inclinação projetados, o operador predeterminou aproximadamente a orientação e o ângulo de inclinação da plataforma de perfuração e, em seguida, colocou o instrumento de localização do norte no local horizontal próximo ao local de perfuração para operação de busca do norte; Após a conclusão da descoberta do norte, o buscador do norte é colocado no trilho-guia da plataforma para exibir as informações atuais da atitude da plataforma (ângulo de inclinação e ângulo de azimute) e, em seguida, a atitude da plataforma é ajustada até que a plataforma atinja o ângulo de projeto.De acordo com os problemas que encontramos no processo de pesquisa de perfuração, lançamos um novo localizador norte em formato NF1000, especialmente para mineração de petróleo, perfuração direcional e outras aplicações de engenharia, que não só alcançou um avanço na aparência, mas também no volume e no peso. foi muito melhorado, seu tamanho é de apenas mm Φ31,8 x85 mm. O peso é de 400g, o que alcançou um grande avanço nos produtos inerciais tradicionais da série North Finder. Seu surgimento permite que mais engenheiros enfrentem ambientes de monitoramento de espaço mais difíceis e limitados.3. ResumoO buscador do norte da Micro-Magic Inc usa um sistema de amarração. Para o desvio de desvio zero e o erro aleatório do localizador norte, a empresa Micro-Magic Inc realizou muitas reformas técnicas de produtos. Atualmente, o mais recente buscador norte NF1000 não apenas realiza funções de compensação de inclinação e autoalinhamento, mas também pode ser usado na sonda. É facilitado um espaço de monitorização mais limitado. Se você estiver interessado neste produto, discuta-o conosco. NF1000Buscador norte dinâmico MEMS de alto desempenho inercial do sistema de navegação  
1 2 3 4 5 6
Um total de 6páginas
Subscibe To Newsletter
Continue lendo, mantenha-se informado, inscreva-se e convidamos você a nos dizer o que pensa.
f y

Deixe um recado

Deixe um recado
Se você está interessado em nossos produtos e deseja saber mais detalhes, deixe uma mensagem aqui, responderemos o mais breve possível.
enviar

Lar

Produtos

Whatsapp

Contate-nos