Principais recursos:
Conclusão: O I3500 exemplifica a integração de MEMS INS e GNSS, melhorando a confiabilidade e a precisão da navegação em vários setores.
A navegação integrada MINS/GNSS refere-se à fusão de informações do MINS (MEMS INS) e do GNSS (Global Navigation Satellite System). Esta integração combina os pontos fortes de ambos os sistemas para se complementarem e alcançarem resultados precisos de PVA (Posição, Velocidade, Atitude).
Após mais de 30 anos de desenvolvimento, a tecnologia inercial MEMS avançou rapidamente e teve ampla aplicação. Vários dispositivos inerciais MEMS práticos e MEMS INS surgiram, sendo amplamente utilizados em áreas como as indústrias aeroespacial, marítima e automotiva. Giroscópios MEMS de nível tático (com estabilidade de polarização de 0,1°/h a 10°/h, 1σ) e acelerômetros MEMS de alta precisão (com estabilidade de polarização de 10⁻⁵g a 10⁻⁶g, 1σ) marcaram a entrada do tático- classificar o MEMS INS no estágio de aplicação do modelo.
Geralmente, os sistemas inerciais MEMS podem ser classificados em três níveis: Conjunto de Sensores Inerciais (ISA), Unidade de Medição Inercial (IMU) e Sistema de Navegação Inercial (INS), conforme ilustrado na Figura 1.
Fig.1 Três níveis de Mems Ins (2)
Os três modelos MEMS INS (Micro-Magic Inc-Mechanical System Inertial Navigation System) recentemente lançados pela Ericco, mostrados na imagem abaixo, são adequados para aplicações em drones, gravadores de voo, veículos não tripulados inteligentes, posicionamento e orientação de leitos de estradas, detecção de canais, veículos de superfície não tripulados e veículos subaquáticos.
Fig.2 Os três modelos Mems Ins recém-lançados por Ericco
O GNSS fornece aos usuários informações de posição e tempo absolutas de alta precisão e para qualquer clima, enquanto os sistemas de navegação inercial (INS) oferecem alta resolução de curto prazo e forte autonomia. Suas características complementares melhoram o desempenho geral: o INS pode aproveitar sua alta precisão de curto prazo para fornecer ao GNSS informações de navegação mais contínuas e completas, enquanto o GNSS pode ajudar a estimar parâmetros de erro do INS, como polarização, obtendo assim observações mais precisas e reduzindo o desvio do INS.
Fig.3 Três níveis de Mems Ins
Especificamente, o GNSS usa sinais de satélites em órbita para calcular posição, tempo e velocidade. Contanto que a antena tenha uma conexão de linha de visão com pelo menos quatro satélites, a navegação GNSS alcança excelente precisão. Quando a visibilidade do satélite é obstruída por obstáculos como árvores ou edifícios, a navegação torna-se pouco fiável ou impossível.
O INS calcula mudanças de posição relativa ao longo do tempo usando informações de taxa angular e aceleração da unidade de medição inercial (IMU). A IMU é composta por seis sensores complementares dispostos em três eixos ortogonais. Cada eixo possui um acelerômetro e um giroscópio. Os acelerômetros medem a aceleração linear, enquanto os giroscópios medem a taxa de rotação. Com estes sensores, a IMU pode medir com precisão o seu movimento relativo no espaço 3D.
O INS usa essas medidas para calcular a posição e a velocidade. Outra vantagem das medições IMU é que elas fornecem soluções angulares em torno dos três eixos. O INS converte essas soluções angulares em atitudes locais (rolamento, inclinação e guinada), fornecendo esses dados juntamente com a posição e a velocidade.
Fig.4 O Sistema de Coordenadas Corporais da Unidade de Medição Inercial
Real-Time Kinematic (RTK) é um algoritmo de posicionamento GNSS maduro e de alta precisão, capaz de atingir precisão de nível centimétrico em ambientes abertos. No entanto, em ambientes urbanos complexos, obstruções e interferências de sinal reduzem a taxa de fixação de ambiguidade, levando à diminuição da capacidade de posicionamento. Portanto, pesquisar sistemas de posicionamento integrados GNSS RTK e INS é crucial para áreas como navegação autônoma, levantamento e mapeamento e análise de movimento.
O I3500 recém-lançado pela Micro-Magic Inc é um MEMS INS auxiliado por GNSS de baixo custo com um MEMS IMU altamente confiável e um módulo de satélite direcional e posicionamento de banda completa de sistema completo com antena dupla. Também integra magnetômetros e um barômetro, que podem calcular o tamanho do ângulo de atitude e ajudar o drone a navegar até a altitude desejada.
A integração dos Sistemas de Navegação Inercial MEMS (INS) com a tecnologia GNSS aumenta significativamente a precisão da navegação, combinando seus pontos fortes. MEMS INS, com seu rápido avanço, é agora amplamente utilizado nas indústrias aeroespacial, marítima e automotiva. O GNSS fornece posicionamento preciso, enquanto o MEMS INS garante navegação contínua, mesmo durante interrupções do GNSS.
O I3500 da Micro-Magic Inc exemplifica essa integração, oferecendo dados de navegação de alta precisão, ideais para navegação autônoma, levantamento topográfico e análise de movimento.
Em resumo, a integração GNSS e MEMS INS revoluciona a navegação, melhorando a precisão, a confiabilidade e a versatilidade em diversas aplicações.
Xml política de Privacidade blog Mapa do site
Direitos autorais
@ Micro-Magic Inc. Todos os direitos reservados.
SUPORTADO POR REDE