Lar

acelerômetro flexível de quartzo

  • Efeito do ambiente de baixa pressão no acelerômetro flexível de quartzo
    Efeito do ambiente de baixa pressão no acelerômetro flexível de quartzo Jan 10, 2025
    Pontos-chaveProduto: Acelerômetro de flexão de quartzoPrincipais recursos:Componentes: Emprega tecnologia de flexão de quartzo para alta sensibilidade e baixo ruído na medição de aceleração.Função: Adequado para medições de aceleração estática e dinâmica, com impacto mínimo em ambientes de baixa pressão.Aplicações: Ideal para monitorar microvibrações em órbitas de espaçonaves e aplicável em sistemas de navegação inercial.Análise de Desempenho: Demonstra alterações insignificantes do fator de escala (menos de 0,1%) em condições de vácuo, garantindo precisão e confiabilidade.Conclusão: Oferece desempenho robusto para aplicações em órbita de longo prazo, tornando-o adequado para requisitos aeroespaciais de alta precisão.O acelerômetro de flexão de quartzo possui características de alta sensibilidade e baixo ruído, tornando-o adequado para medir aceleração estática e dinâmica. Ele pode ser usado como um sensor sensível à aceleração para monitorar ambientes de microvibração em órbitas de naves espaciais. Este artigo apresenta principalmente o efeito do ambiente de baixa pressão no acelerômetro flexível de quartzo.O diafragma sensível do acelerômetro de quartzo experimenta efeitos de amortecimento de membrana quando em movimento no ambiente aéreo, o que poderia causar alterações no desempenho do sensor (fator de escala e ruído) em ambientes de baixa pressão. Isso pode afetar a exatidão e a precisão da medição da aceleração de microvibração em órbita. Portanto, é necessário analisar este efeito e fornecer uma conclusão de análise de viabilidade para o uso a longo prazo de acelerômetros flexíveis de quartzo em ambientes de alto vácuo.Fig.1 Acelerômetros de quartzo em órbitas de espaçonaves1.Análise de amortecimento em ambientes de baixa pressãoQuanto mais tempo o acelerômetro de flexão de quartzo opera em órbita, mais vazamento de ar ocorre dentro da embalagem, resultando em menor pressão do ar até atingir o equilíbrio com o ambiente de vácuo espacial. O caminho livre médio das moléculas de ar aumentará continuamente, aproximando-se ou mesmo excedendo 30μm, e o estado do fluxo de ar fará a transição gradual de fluxo viscoso para fluxo viscoso-molecular. Quando a pressão cai abaixo de 102Pa, ela entra no estado de fluxo molecular. O amortecimento do ar torna-se cada vez menor e, no estado de fluxo molecular, o amortecimento do ar é quase zero, deixando apenas o amortecimento eletromagnético para o diafragma flexível do acelerômetro de quartzo.Para acelerômetros de flexão de quartzo que precisam operar por um longo período em ambientes de baixa pressão ou vácuo no espaço, se houver vazamento significativo de gás dentro da vida útil exigida da missão, o coeficiente de amortecimento da membrana diminuirá significativamente. Isso alterará as características do acelerômetro, tornando as vibrações livres dispersas ineficazes na atenuação. Consequentemente, o fator de escala e o nível de ruído do sensor podem mudar, afetando potencialmente a exatidão e a precisão da medição. Portanto, é necessário realizar testes de viabilidade sobre o desempenho de acelerômetros flexíveis de quartzo em ambientes de baixa pressão e comparar os resultados dos testes para avaliar a extensão do impacto dos ambientes de baixa pressão na precisão da medição dos acelerômetros flexíveis de quartzo.2.Impacto de ambientes de baixa pressão no fator de escala dos acelerômetros de flexão de quartzoCom base na análise dos princípios de funcionamento e ambientes de aplicação de produtos acelerômetros flexíveis de quartzo, sabe-se que o produto é encapsulado com pressão de 1 atmosfera, e o ambiente de aplicação é um ambiente de baixo vácuo em órbita terrestre (grau de vácuo aproximadamente 10-5 a 10 -6Pa) a uma distância de 500km do solo. Acelerômetros flexíveis de quartzo normalmente usam tecnologia de vedação de resina epóxi, com uma taxa de vazamento geralmente garantida em 1,0×10-4Pa·L/s. Em um ambiente de vácuo, o ar interno vazará lentamente, com a pressão caindo para 0,1 atmosfera (fluxo viscoso-molecular) após 30 dias, e caindo para 10-5Pa (fluxo molecular) após 330 dias.O impacto do amortecimento do ar nos acelerômetros de flexão de quartzo se manifesta principalmente em dois aspectos: o impacto no fator de escala e o impacto no ruído. De acordo com a análise do projeto, o impacto do amortecimento do ar no fator de escala é de aproximadamente 0,0004 (quando a pressão cai para o vácuo, não há amortecimento do ar). O processo de cálculo e análise é o seguinte:O acelerômetro de flexão de quartzo usa o método de inclinação por gravidade para calibração estática. No conjunto pendular do acelerômetro, em ambiente com ar, a força normal no conjunto pendular é: mg0, e a força de empuxo fb é: ρVg0. A força eletromagnética sobre o pêndulo é igual à diferença entre a força que ele experimenta devido à gravidade e a força de empuxo, expressa como:f=mg0-ρVg0Onde:m é a massa do pêndulo, m=8,12×10−4 kg.ρ é a densidade do ar seco, ρ=1,293 kg/m³.V é o volume da parte móvel do conjunto do pêndulo, V=280 mm³.g0 é a aceleração gravitacional, g0=9,80665 m/s².A porcentagem da força de empuxo em relação à força gravitacional no próprio conjunto do pêndulo é:ρVg0/mg0=ρV/m≈0,044%Em um ambiente de vácuo, quando a densidade do ar é aproximadamente zero devido ao vazamento de gás, fazendo com que a pressão dentro e fora do instrumento se equilibre, a mudança no fator de escala do acelerômetro flexível de quartzo é de 0,044%.3.Conclusão:Ambientes de baixa pressão podem afetar o fator de escala e o ruído do acelerômetro flexível de quartzo. Através de cálculos e análises, mostra-se que o impacto máximo do ambiente de vácuo no fator de escala não é superior a 0,044%. A análise teórica indica que a influência dos ambientes de baixa pressão no fator de escala do sensor é inferior a 0,1%, com impacto mínimo na precisão da medição, que pode ser desprezada. Isso demonstra que ambientes de baixa pressão ou vácuo têm efeitos mínimos no fator de escala e no ruído do acelerômetro de flexão de quartzo, tornando-o adequado para aplicações em órbita de longo prazo.É importante notar que os acelerômetros flexíveis de quartzo da série AC7 são projetados especificamente para aplicações aeroespaciais. Entre eles, o AC7 possui a maior precisão, com repetibilidade de polarização zero ≤20μg, fator de escala de 1,2mA/g e repetibilidade de fator de escala ≤20μg. É totalmente adequado para monitorar ambientes de microvibração de espaçonaves em órbita. Além disso, pode ser aplicado a sistemas de navegação inercial e sistemas de medição de ângulos estáticos com requisitos de alta precisão. AC-5Sensor de vibração de quartzo do acelerômetro de erro de baixo desvio para Imu Ins  
  • Identificação de acelerômetro flexível de quartzo por meio de análise de vibração
    Identificação de acelerômetro flexível de quartzo por meio de análise de vibração Jan 13, 2025
    Pontos-chaveProduto: Acelerômetro Flexível de QuartzoPrincipais recursos:Componentes: Usa acelerômetros flexíveis de quartzo de alta precisão para medições precisas de aceleração e inclinação.Função: A análise de vibração ajuda a identificar os coeficientes de erro do sensor, melhorando a precisão e o desempenho da medição.Aplicações: Amplamente utilizado em monitoramento de integridade estrutural, navegação aeroespacial, testes automotivos e diagnóstico de máquinas industriais.Análise de dados: Combina dados de vibração com algoritmos de processamento de sinal para otimizar modelos de sensores e melhorar o desempenho.Conclusão: Oferece medições de aceleração precisas e confiáveis, com forte potencial em diversas indústrias de alta precisão.1.Introdução:No domínio da tecnologia de sensores, os acelerômetros desempenham um papel fundamental em vários setores, do automotivo ao aeroespacial, da saúde à eletrônica de consumo. Sua capacidade de medir aceleração e inclinação em vários eixos os torna indispensáveis para aplicações que vão desde monitoramento de vibração até navegação inercial. Entre os diversos tipos de acelerômetros, os acelerômetros flexíveis de quartzo destacam-se pela precisão e versatilidade. Neste artigo, investigamos os meandros da identificação de acelerômetros flexíveis de quartzo por meio da análise de vibração, explorando seu design, princípios de funcionamento e a importância da análise de vibração na otimização de seu desempenho.2.Importância da Análise de Vibração:Para que o acelerômetro seja identificado, primeiro realize testes de mesa de vibração multidirecional nele. Obtenha dados brutos ricos por meio de software de aquisição de dados. Em seguida, com base nos dados de teste, por um lado, combine o algoritmo geral de mínimos quadrados para identificar seus coeficientes de erro de ordem superior, melhorar sua equação do modelo de sinal, aumentar a precisão da medição do sensor e explorar a relação entre o alto - ordenar os coeficientes de erro do acelerômetro e seu status operacional.Buscar métodos para identificar seu estado operacional através dos coeficientes de erro de ordem superior do acelerômetro. Por outro lado, extraia seu conjunto eficaz de recursos, treine redes neurais e, finalmente, modularize o algoritmo eficaz de análise de dados por meio da tecnologia de instrumento virtual. Desenvolva software aplicativo para identificar o status operacional de acelerômetros flexíveis de quartzo para obter uma identificação rápida e precisa do status operacional do sensor. Isso ajudará o pessoal a melhorar prontamente as estruturas dos circuitos internos, aumentar a precisão da medição dos acelerômetros e melhorar o rendimento dos produtos fabricados durante o processo de processamento e fabricação.A análise de vibração serve como base na caracterização e otimização de acelerômetros flexíveis de quartzo. Ao submeter esses sensores a vibrações controladas em diferentes frequências e amplitudes, os engenheiros podem avaliar suas características de resposta dinâmica, incluindo sensibilidade, linearidade e faixa de frequência. A análise de vibração ajuda a identificar possíveis fontes de erro ou não linearidade na saída do acelerômetro, permitindo que os fabricantes ajustem os parâmetros do sensor para melhorar o desempenho e a precisão.3.Processo de identificação:A identificação de acelerômetros flexíveis de quartzo por meio de análise de vibração envolve uma abordagem sistemática que abrange testes experimentais, análise de dados e validação. Os engenheiros normalmente realizam testes de vibração usando shakers calibrados ou sistemas de excitação de vibração, expondo os acelerômetros a vibrações senoidais ou aleatórias enquanto registram seus sinais de saída. Técnicas avançadas de processamento de sinal, como análise de Fourier e estimativa de densidade espectral, são empregadas para analisar a resposta de frequência dos acelerômetros e identificar frequências de ressonância, taxas de amortecimento e outros parâmetros críticos. Através de testes e análises iterativos, os engenheiros refinam o modelo do acelerômetro e validam seu desempenho de acordo com critérios especificados.4.Aplicações e Perspectivas Futuras:Os acelerômetros flexíveis de quartzo encontram aplicações em diversos setores, incluindo monitoramento de integridade estrutural, navegação aeroespacial, testes automotivos e diagnóstico de máquinas industriais. Sua alta precisão, robustez e versatilidade os tornam ferramentas indispensáveis para engenheiros e pesquisadores que buscam compreender e mitigar os efeitos de forças dinâmicas e vibrações. Olhando para o futuro, os avanços contínuos na tecnologia de sensores e nos algoritmos de processamento de sinais estão preparados para melhorar ainda mais o desempenho e as capacidades dos acelerômetros flexíveis de quartzo, abrindo novas fronteiras na análise de vibração e na detecção dinâmica de movimento.Concluindo, a identificação de acelerômetros flexíveis de quartzo por meio de análise de vibração representa um esforço crítico na tecnologia de sensores, permitindo que os engenheiros liberem todo o potencial desses instrumentos de precisão. Ao compreender os princípios de funcionamento, realizar análises minuciosas de vibração e refinar o desempenho do sensor, fabricantes e pesquisadores podem aproveitar os recursos dos acelerômetros de quartzo para uma infinidade de aplicações, desde monitoramento estrutural até sistemas avançados de navegação. À medida que a inovação tecnológica continua a acelerar, o papel da análise de vibração na otimização do desempenho do sensor permanecerá fundamental, impulsionando avanços na medição de precisão e na detecção dinâmica de movimento.5.ConclusãoA Micro-Magic Inc fornece acelerômetros flexíveis de quartzo de alta precisão, como AC1, com pequeno erro e alta precisão, que têm uma estabilidade de polarização de 5μg, repetibilidade do fator de escala de 15 ~ 50 ppm e um peso de 80g, e podem ser amplamente usado nas áreas de perfuração de petróleo, sistema de medição de microgravidade de transportadores e navegação inercial. AC1Acelerômetro flexível de quartzo de nível de classe de navegação com faixa de medição 50G excelente estabilidade e repetibilidade a longo prazo  
  • Test Method for Bias and Scale Factor of Quartz Flexible Accelerometer: Comprehensive Guide and Temperature Sensitivity Analysis
    Test Method for Bias and Scale Factor of Quartz Flexible Accelerometer: Comprehensive Guide and Temperature Sensitivity Analysis Mar 31, 2025
    "An in-depth analysis of the testing methods for the bias (zero bias) and scale factor of quartz flexible accelerometers is provided, including specialized techniques such as four-point rolling test and two-point test, as well as the calculation formula for temperature sensitivity. This is applicable to high-precision applications such as inertial navigation and spacecraft."   The bias (zero bias) and scale factor of quartz flexible accelerometers directly determine the measurement accuracy and long-term stability of the accelerometer, especially in high-precision application scenarios such as inertial navigation and attitude control. Therefore, they are two key performance indicators for evaluating quartz accelerometers.   The core significance of bias (zero bias) lies in its inherent system error of the accelerometer, which directly leads to the fundamental deviation of all measurement results. For example, if the zero bias is 1 mg, the measured value will add this error regardless of the actual acceleration. Zero bias will also drift with factors such as time, temperature, and vibration (zero bias stability). In inertial navigation systems, zero drift is continuously amplified through integration operations, resulting in cumulative errors in position and velocity. The temperature characteristics of quartz materials can also cause zero bias to change with temperature (zero bias temperature coefficient), so temperature compensation algorithms are needed to suppress this effect in high-precision applications. Scale factor refers to the proportional relationship between the output signal of an accelerometer and the actual input acceleration. The error in scale factor can directly lead to proportional distortion of the measurement results. The stability of scale factor directly affects system performance in high dynamic range or variable temperature environments. In the acceleration integration operation of inertial navigation, the scale factor error will be integrated twice, further amplifying the position error.   Therefore, the reason why bias and scale factor have become key performance indicators of quartz flexible accelerometers is that they are both fundamental error sources and key constraints on long-term stability. In system level applications, the performance of these two directly determines whether the accelerometer can meet the requirements of high precision and high reliability, especially in scenarios such as unmanned driving, spacecraft, submarine navigation, etc. where there is zero tolerance for errors   The bias test can be conducted through two methods: four point rolling test (0°,90°,180°,270°positions) or two-point test (90°,270°positions). The scale factor test can be conducted through three methods: four point rolling test (0°,90°,180°,270°positions), two-point test (90°,270°positions), and vibration test. Taking the four-point rolling test method as an example, this article explains how to obtain the bias and scale factor of an acceleration sensor.     1. Testing methods for bias and scaling factors:   a) Install the accelerometer on a specific test bench (multi tooth indexing head). b) Start the test bench c) Rotate the test bench clockwise to the 0°position, stabilize it, and record the output of multiple sets of tested products according to the specified sampling frequency. Take the arithmetic mean as the measurement result; d) Rotate the test bench clockwise to the 90°position, stabilize it, and record the output of multiple sets of tested products according to the specified sampling frequency. Take the arithmetic mean as the measurement result; e) Rotate the test bench clockwise to the 180°position, stabilize it, and record the output of multiple sets of tested products according to the specified sampling frequency. Take the arithmetic mean as the measurement result; f) Rotate the test bench clockwise to the 270°position, stabilize it, and record the output of multiple sets of tested products according to the specified sampling frequency. Take the arithmetic mean as the measurement result; g) Rotate the test bench clockwise to the 360°position, then counterclockwise to make the rotation angles at 270°, 180°, 90°, and 0°positions. After stabilization, record the output of multiple sets of tested products according to the specified sampling frequency, and take the arithmetic mean as the measurement result. h) Calculate the bias and scaling factor of the tested product using the following formula (1) and (2). K0 =    -------------------------------------- (1)   K1 =   -------------------------------------- (2)        Where:         K0 -------Bias         K1 -------Scale factor         -------The total average of forward and reverse readings at 0°position         -----The total average reading of forward and reverse rotation at 90°position         --- The total average reading of forward and reverse rotation at180° position         --- The total average of readings for forward and reverse rotation at 270°position   2. Test method for bias temperature sensitivity and scale factor temperature sensitivity a) Start the test bench b) Calculate the bias and scaling factors at each temperature point using the formulas (1) and formulas (2) at room temperature, the upper limit operating temperature specified by the accelerometer, and the lower limit temperature specified by the accelerometer. c) Calculate the temperature sensitivity of the accelerometer using the following formula (3) and (4):      ---------------------(3) where: ---- Bias temperature sensitivity ----Bias of upper limit temperature of sensor ----Bias of sensor room temperature -----Bias of the lower limit temperature of the sensor ------Upper limit temperature ------Room temperature -------Lower limit temperature        ---------------------(4) Where: ----Scale factor temperature sensitivity ------Scale factor ----Scale factor for the upper limit temperature of the sensor ----Scale factor of sensor room temperature -----Scale factor for the lower limit temperature of the sensor ------Upper limit temperature ------Room temperature -------Lower limit temperature AC-1 Quartz Flexible Accelerometer   AC-4 Quartz Flexible Accelerometer  
Subscibe To Newsletter
Continue lendo, mantenha-se informado, inscreva-se e convidamos você a nos dizer o que pensa.
f y

Deixe um recado

Deixe um recado
Se você está interessado em nossos produtos e deseja saber mais detalhes, deixe uma mensagem aqui, responderemos o mais breve possível.
enviar

Lar

Produtos

Whatsapp

Contate-nos