Análise de precisão de detecção de deformação de estrutura de engenharia de giroscópio de fibra óptica
Produto: Sistema de detecção de deformação baseado em giroscópio de fibra óptica
Principais recursos:
Conclusão:
Este sistema fornece medições de deformação precisas e confiáveis, oferecendo soluções valiosas para necessidades de engenharia e análise estrutural.
O princípio do método de detecção de deformação da estrutura de engenharia baseado no giroscópio de fibra óptica é fixar o giroscópio de fibra óptica ao dispositivo de detecção, medir a velocidade angular do sistema de detecção quando executado na superfície medida da estrutura de engenharia, medir a distância operacional de o dispositivo de detecção e calcular a trajetória operacional do dispositivo de detecção para realizar a detecção de deformação da estrutura de engenharia. Este método é referido como método de trajetória neste artigo. Este método pode ser descrito como “navegação plana bidimensional”, ou seja, a posição do transportador é resolvida na superfície de prumo da superfície da estrutura medida e a trajetória do transportador ao longo da superfície da estrutura medida é finalmente obtida.
De acordo com o princípio do método de trajetória, suas principais fontes de erro incluem erro de referência, erro de medição de distância e erro de medição de ângulo. O erro de referência refere-se ao erro de medição do ângulo de inclinação inicial θ0, o erro de medição de distância refere-se ao erro de medição de ΔLi, e o erro de medição de ângulo refere-se ao erro de medição de Δθi, que é causado principalmente pelo erro de medição do velocidade angular do giroscópio de fibra óptica. Este artigo não considera a influência do erro de referência e do erro de medição de distância no erro de detecção de deformação, apenas o erro de detecção de deformação causado pelo erro do giroscópio de fibra óptica é analisado.
O giroscópio de fibra óptica é um sensor para medir a velocidade angular baseado no efeito Sagnac. Depois que a luz emitida pela fonte de luz passa pelo guia de ondas Y, dois feixes de luz girando em direções opostas no anel de fibra são formados. Quando a portadora gira em relação ao espaço inercial, há uma diferença de caminho óptico entre os dois feixes de luz, e o sinal de interferência óptica relacionado à velocidade angular rotacional pode ser detectado na extremidade do detector, de modo a medir a velocidade diagonal.
A expressão matemática do sinal de saída do giroscópio de fibra óptica é: F=Kw+B0+V. Onde F é a saída do giroscópio, K é o fator de escala e ω é o giroscópio
A entrada de velocidade angular no eixo sensível, B0 é a polarização zero giroscópica, υ é o termo de erro integrado, incluindo ruído branco e componentes de variação lenta causados por vários ruídos com longo tempo de correlação, υ também pode ser considerado como o erro de polarização zero .
As fontes de erro de medição do giroscópio de fibra óptica incluem erro de fator de escala e erro de desvio zero. Atualmente, o erro do fator de escala do giroscópio de fibra óptica aplicado na engenharia é de 10-5~10-6. Na aplicação de detecção de deformação, a entrada de velocidade angular é pequena e o erro de medição causado pelo erro do fator de escala é muito menor do que aquele causado pelo erro de desvio zero, que pode ser ignorado. O componente DC do erro de polarização zero é caracterizado pela repetibilidade de polarização zero Br, que é o desvio padrão do valor de polarização zero em testes múltiplos. O componente AC é caracterizado pela estabilidade de polarização zero Bs, que é o desvio padrão do valor de saída do giroscópio de sua média em um teste, e seu valor está relacionado ao tempo de amostragem do giroscópio.
Tomando como exemplo o modelo simples de viga apoiada, calcula-se o erro de detecção de deformação e estabelece-se o modelo teórico de deformação estrutural. Nesta base, a detecção é definida
Com base na velocidade de operação e no tempo de amostragem do sistema, pode-se obter a velocidade angular teórica do giroscópio de fibra óptica. Em seguida, o erro de medição da velocidade angular do giroscópio de fibra óptica pode ser simulado de acordo com o modelo de erro de desvio zero do giroscópio de fibra óptica estabelecido acima.
A configuração de simulação da velocidade de execução e do tempo de amostragem adota um modo de variação de faixa, ou seja, o ΔLi passado por cada tempo de amostragem é fixo e o tempo de amostragem do mesmo segmento de linha é alterado alterando a velocidade de execução. Por exemplo, quando o ΔLi é 1 mm, como a velocidade de operação é 2 m/s, o tempo de amostragem é 0,5 ms. Se a velocidade operacional for 0,1 m/s, o tempo de amostragem será 10 ms.
Primeiramente, é analisado o efeito do erro de repetibilidade de polarização zero. Quando não há erro de estabilidade de polarização zero, o erro de medição da velocidade angular causado pelo erro de polarização zero é fixo, como quanto mais rápida a velocidade de movimento, menor o tempo total de medição, menor o impacto do erro de polarização zero, menor a deformação erro de medição. Quando a velocidade de operação é rápida, o erro de estabilidade de polarização zero é o principal fator que causa o erro de medição do sistema. Quando a velocidade de operação é baixa, o erro de repetibilidade de polarização zero torna-se a principal fonte do erro de medição do sistema.
Usando o índice típico de giroscópio de fibra óptica de média precisão, ou seja, a estabilidade de polarização zero é de 0,5 °/h quando o tempo de amostragem é de 1 s, a repetibilidade zero é de 0,05 °/h. Compare os erros de medição do sistema na velocidade operacional de 2 m/s, 1 m/s, 0,2 m/s, 0,1 m/s, 0,02 m/s, 0,01 m/s, 0,002 m/s e 0,001 m/s. Quando a velocidade de operação é de 2 m/s, o erro de medição é de 8,514 μm (RMS), quando a velocidade de medição é reduzida para 0,2 m/s, o erro de medição é de 34,089 μm (RMS), quando a velocidade de medição é reduzida para 0,002 m /s, o erro de medição é de 2246,222μm (RMS), como pode ser visto nos resultados da comparação. Quanto mais rápida for a velocidade de execução, menor será o erro de medição. Considerando a conveniência da operação de engenharia, a velocidade de operação de 2 m/s pode atingir uma precisão de medição melhor que 10 μm.
Com base na análise de simulação da medição de deformação da estrutura de engenharia baseada no giroscópio de fibra óptica, o modelo de erro do giroscópio de fibra óptica é estabelecido, e a relação entre o erro de medição de deformação e o desempenho do giroscópio de fibra óptica é obtida usando o feixe simples suportado modelo como exemplo. Os resultados da simulação mostram que quanto mais rápido o sistema funciona, ou seja, quanto menor o tempo de amostragem do giroscópio de fibra óptica, maior será a precisão da medição de deformação do sistema quando o número de amostragem permanecer inalterado e a precisão da detecção de distância for garantida. Com o típico índice de giroscópio de fibra óptica de média precisão e a velocidade de operação de 2 m/s, a precisão da medição de deformação superior a 10 μm pode ser alcançada.
Micro-Magic Inc GF-50 tem um diâmetro de φ50*36,5mm e uma precisão de 0,1º/h. Precisão GF-60 0,05º/h, pertence ao alto nível tático do giroscópio de fibra óptica, nossa empresa produziu giroscópio com tamanho pequeno, peso leve, baixo consumo de energia, início rápido, operação simples, fácil de usar e outras características, amplamente usado em INS, IMU, sistema de posicionamento, sistema de localização norte, estabilidade de plataforma e outros campos. Se você estiver interessado em nosso giroscópio de fibra óptica, não hesite em nos contatar.
Xml política de Privacidade blog Mapa do site
Direitos autorais
@ Micro-Magic Inc. Todos os direitos reservados.
SUPORTADO POR REDE