Lar

Planta giroscópio MEMS

  • Análise do circuito de controle do modo de acionamento do giroscópio MEMS
    Análise do circuito de controle do modo de acionamento do giroscópio MEMS Jan 10, 2025
    Pontos-chaveProduto: Sistema de Navegação Inercial Puro (INS) Baseado em IMUPrincipais recursos:Componentes: Usa acelerômetros e giroscópios MEMS para medição em tempo real de aceleração e velocidade angular.Função: Integra dados de posição e atitude iniciais com medições IMU para calcular posição e atitude em tempo real.Aplicações: Ideal para navegação interna, aeroespacial, sistemas autônomos e robótica.Desafios: Resolve erros de sensores, desvios cumulativos e impactos ambientais dinâmicos com métodos de calibração e filtragem.Conclusão: Fornece posicionamento preciso em ambientes desafiadores, com desempenho robusto quando combinado com sistemas auxiliares de posicionamento como GPS. O giroscópio MEMS depende da velocidade angular sensível à força de Coriolis e seu sistema de controle é dividido em malha de controle do modo de acionamento e malha de controle do modo de detecção. Somente garantindo o rastreamento em tempo real da amplitude de vibração do modo de acionamento e da frequência de ressonância a demodulação do canal de detecção pode obter informações precisas de velocidade angular de entrada. Este artigo analisará o circuito de controle do modo de condução do giroscópio MEMS sob vários aspectos.Modelo de loop de controle modal de acionamentoO deslocamento de vibração do modo de acionamento do giroscópio MEMS é convertido em mudança de capacitância através da estrutura de detecção do capacitor pente e, em seguida, a capacitância é convertida no sinal de tensão que caracteriza o deslocamento do acionamento do giroscópio através do circuito de diodo em anel. Depois disso, o sinal entrará em duas ramificações respectivamente, um sinal através do módulo de controle automático de ganho (AGC) para obter o controle de amplitude, um sinal através do módulo de loop bloqueado de fase (PLL) para obter o controle de fase. No módulo AGC, a amplitude do sinal de deslocamento do inversor é primeiro demodulada por multiplicação e filtro passa-baixa e, em seguida, a amplitude é controlada no valor de referência definido através do link PI e o sinal de controle da amplitude do inversor é emitido. O sinal de referência utilizado para demodulação de multiplicação no módulo PLL é ortogonal ao sinal de referência de demodulação utilizado no módulo AGC. Depois que o sinal passa pelo módulo PLL, a frequência ressonante de acionamento do giroscópio pode ser rastreada. A saída do módulo é o sinal de controle da fase de acionamento. Os dois sinais de controle são multiplicados para gerar a tensão de acionamento do giroscópio, que é aplicada ao pente de acionamento e convertida em força motriz eletrostática para acionar o modo de acionamento do giroscópio, de modo a formar um circuito de controle de malha fechada do modo de acionamento do giroscópio. A Figura 1 mostra o circuito de controle do modo drive de um giroscópio MEMS.Figura 1. Diagrama de blocos da estrutura de controle do modo de acionamento do giroscópio MEMSFunção de transferência modal de acionamentoDe acordo com a equação dinâmica do modo de condução do giroscópio MEMS vibratório, a função de transferência de domínio contínuo pode ser obtida pela transformada de Laplace:Onde mx é a massa equivalente do modo de acionamento do giroscópio, ωx=√kx/mx é a frequência de ressonância do modo de acionamento e Qx = mxωx/cx é o fator de qualidade do modo de acionamento.Link de conversão de deslocamento-capacitânciaDe acordo com a análise da capacitância de detecção dos dentes do pente, a ligação de conversão deslocamento-capacitância é linear quando o efeito de borda é ignorado, e o ganho da capacitância diferencial mudando com o deslocamento pode ser expresso como:Onde, nx é o número de pentes ativos acionados pelo modo giroscópico, ε0 é a constante dielétrica do vácuo, hx é a espessura dos pentes de detecção de acionamento, lx é o comprimento de sobreposição dos pentes ativos e fixos de detecção de acionamento em repouso, e dx é a distância entre os dentes.Link de conversão capacitância-tensãoO circuito de conversão de tensão do capacitor usado neste artigo é um circuito de diodo em anel e seu diagrama esquemático é mostrado na Figura 2.Figura 2 Diagrama esquemático do circuito de diodo em anelNa figura, C1 e C2 são capacitores de detecção diferencial de giroscópio, C3 e C4 são capacitores de demodulação e Vca são amplitudes de onda quadrada. O princípio de funcionamento é: quando a onda quadrada está no meio ciclo positivo, os diodos D2 e D4 são ligados, então o capacitor C1 carrega C4 e C2 carrega C3; Quando a onda quadrada está em meio período positivo, os diodos D1 e D3 são ligados, então o capacitor C1 descarrega para C3 e C2 descarrega para C4. Desta forma, após vários ciclos de onda quadrada, a tensão nos capacitores demodulados C3 e C4 se estabilizará. Sua expressão de tensão é:Para o giroscópio micromecânico de silício estudado neste artigo, sua capacitância estática é da ordem de vários pF, e a variação da capacitância é inferior a 0,5pF, enquanto a capacitância de demodulação usada no circuito é da ordem de 100 pF, portanto há CC0》∆C e C2》∆C2, e o ganho de conversão de tensão do capacitor é obtido pela fórmula simplificada:Onde Kpa é o fator de amplificação do amplificador diferencial, C0 é a capacitância de demodulação, C é a capacitância estática da capacitância de detecção, Vca é a amplitude da portadora e VD é a queda de tensão do diodo.Link de conversão capacitância-tensãoO controle de fase é uma parte importante do controle do giroscópio MEMS. A tecnologia de loop de bloqueio de fase pode rastrear a mudança de frequência do sinal de entrada em sua banda de frequência capturada e bloquear a mudança de fase. Portanto, este artigo usa a tecnologia de loop de bloqueio de fase para inserir o controle de fase do giroscópio, e seu diagrama de blocos de estrutura básica é mostrado na Figura 3.Figura. 3 Diagrama de blocos da estrutura básica do PLLPLL é um sistema de regulação automática de fase de feedback negativo, seu princípio de funcionamento pode ser resumido da seguinte forma: O sinal de entrada externo ui(t) e o sinal de feedback uo(t) de saída do VCO são inseridos no discriminador de fase ao mesmo tempo para completar a comparação de fase dos dois sinais, e a extremidade de saída do discriminador de fase emite um sinal de tensão de erro ud(t) refletindo a diferença de fase θe(t) dos dois sinais; O sinal através do filtro de loop filtrará os componentes de alta frequência e o ruído, obterá um oscilador de controle de tensão uc (t), o oscilador de controle de tensão ajustará a frequência do sinal de saída de acordo com esta tensão de controle, de modo que gradualmente se aproxime à frequência do sinal de entrada e ao sinal de saída final uo(t). Quando a frequência de ui(t) é igual a uo(t) ou um valor estável, o loop atinge um estado bloqueado.Controle automático de ganhoO controle automático de ganho (AGC) é um sistema de feedback negativo de circuito fechado com controle de amplitude, que, combinado com circuito de bloqueio de fase, fornece amplitude e vibração estável de fase para o modo de acionamento do giroscópio. Seu diagrama de estrutura é mostrado na Figura 4.Figura 4. Diagrama de blocos da estrutura de controle automático de ganhoO princípio de funcionamento do controle automático de ganho pode ser resumido da seguinte forma: o sinal ui(t) com as informações de deslocamento da unidade do giroscópio é inserido no link de detecção de amplitude, o sinal de amplitude de deslocamento da unidade é extraído por demodulação de multiplicação e, em seguida, a alta frequência componente e ruído são filtrados por filtro passa-baixa; Neste momento, o sinal é um sinal de tensão CC relativamente puro que caracteriza o deslocamento do acionamento e, em seguida, controla o sinal no valor de referência determinado através de um link PI e emite o sinal elétrico ua(t) que controla a amplitude do acionamento para completar o controle de amplitude.ConclusãoNeste artigo, o circuito de controle do modo de condução do giroscópio MEMS é introduzido, incluindo modelo, conversão de capacitância de desbloqueio, conversão de capacitância-tensão, circuito de bloqueio de fase e controle automático de ganho. Como fabricante de sensores giroscópios MEMS, a Micro-Magic Inc fez pesquisas detalhadas sobre giroscópios MEMS e frequentemente popularizou e compartilhou o conhecimento relevante do giroscópio MEMS. Para uma compreensão mais profunda do giroscópio MEMS, você pode consultar os parâmetros do MG-501 e MG1001.Se você estiver interessado em mais conhecimento e produtos de MEMS, entre em contato conosco. MG502Giroscópio MEMS MG502   
  • Comparação de especificações técnicas do giroscópio MEMS de grau de navegação
    Comparação de especificações técnicas do giroscópio MEMS de grau de navegação Jan 10, 2025
    Pontos-chaveProduto: Giroscópio MEMS de nível de navegaçãoPrincipais recursos:Componentes: Giroscópio MEMS para medição precisa da velocidade angular.Função: Fornece dados de navegação de alta precisão com baixo desvio, adequados para navegação estável e de longo prazo.Aplicações: Ideal para aeroespacial, orientação de mísseis táticos, navegação marítima e robótica industrial.Desempenho: Apresenta baixa instabilidade de polarização e desvio aleatório, oferecendo desempenho confiável ao longo do tempo.Comparação: Diferentes modelos (MG-101, MG-401, MG-501) atendem a diversas necessidades de precisão, com o MG-101 fornecendo a mais alta precisão.O giroscópio MEMS é um tipo de sensor inercial para medir velocidade angular ou deslocamento angular. Tem uma ampla perspectiva de aplicação em exploração de petróleo, orientação de armas, aeroespacial, mineração, topografia e mapeamento, robôs industriais e eletrônicos de consumo. Devido aos diferentes requisitos de precisão em vários campos, os giroscópios MEMS são divididos em três níveis no mercado: nível de navegação, nível tático e nível de consumidor.Este artigo apresentará detalhadamente o giroscópio MEMS de navegação e comparará seus parâmetros. O seguinte será elaborado a partir dos indicadores técnicos do giroscópio MEMS, da análise de deriva do giroscópio e da comparação de três giroscópios MEMS de nível de navegação.Especificações técnicas do giroscópio MEMSO giroscópio MEMS ideal é que a saída do seu eixo sensível seja proporcional aos parâmetros angulares de entrada (Ângulo, taxa angular) do eixo correspondente da portadora sob quaisquer condições, e não seja sensível aos parâmetros angulares do seu eixo transversal, nem é sensível a quaisquer parâmetros axiais não angulares (como aceleração de vibração e aceleração linear). Os principais indicadores técnicos do giroscópio MEMS são mostrados na Tabela 1.Indicador técnicoUnidadeSignificadoFaixa de medição(°)/sEfetivamente sensível à faixa de velocidade angular de entradaViés zero(°)/hA saída de um giroscópio quando a taxa de entrada no giroscópio é zero. Como a saída é diferente, a taxa de entrada equivalente é geralmente usada para representar o mesmo tipo de produto, e quanto menor o viés zero, melhor; Diferentes modelos de produtos, quanto menor o viés zero, melhor.Repetibilidade de polarização(°)/h(1σ)Nas mesmas condições e em intervalos especificados (sucessivas, diariamente, em dias alternados…) O grau de concordância entre os valores parciais de medições repetidas. Expresso como o desvio padrão de cada deslocamento medido. Quanto menor, melhor para todos os giroscópios (avalie como é fácil compensar o zero)Deriva zero(°)/sA taxa de variação temporal do desvio da saída do giroscópio em relação à saída ideal. Ele contém componentes estocásticos e sistemáticos e é expresso em termos do deslocamento angular de entrada correspondente em relação ao espaço inercial em unidade de tempo.Fator de escalaV/(°)/s、mA/(°)/sA razão entre a mudança na saída e a mudança na entrada a ser medida.Largura de bandaHzNo teste característico de frequência do giroscópio, estipula-se que a faixa de frequência correspondente à amplitude da amplitude medida é reduzida em 3dB, e a precisão do giroscópio pode ser melhorada sacrificando a largura de banda do giroscópio.Tabela 1 Principais índices técnicos do giroscópio MEMSAnálise de deriva do giroscópioSe houver torque de interferência no giroscópio, o eixo do rotor se desviará do azimute de referência estável original e formará um erro. O ângulo de desvio do eixo do rotor em relação ao azimute do espaço inercial (ou azimute de referência) na unidade de tempo é chamado de taxa de desvio do giroscópio. O principal índice para medir a precisão do giroscópio é a taxa de deriva.A deriva giroscópica é dividida em duas categorias: uma é sistemática, a lei é conhecida, causa deriva regular, podendo ser compensada por computador; O outro tipo é causado por fatores aleatórios, que causam desvios aleatórios. A taxa de deriva sistemática é expressa pelo deslocamento angular por unidade de tempo, e a taxa de deriva aleatória é expressa pela raiz quadrada média do deslocamento angular por unidade de tempo ou pelo desvio padrão. A faixa aproximada de taxas de deriva aleatória de vários tipos de giroscópios que pode ser alcançada atualmente é mostrada na Tabela 2.Tipo de giroscópioTaxa de deriva aleatória/(°)·h-1Giroscópio de rolamento de esferas10-1Giroscópio de rolamento rotativo1-0,1Giroscópio flutuante líquido0,01-0,001Giroscópio flutuante de ar0,01-0,001Giroscópio sintonizado dinamicamente0,01-0,001Giroscópio eletrostático0,01-0,0001Giroscópio ressonante hemisférico0,1-0,01Giroscópio laser de anel0,01-0,001Giroscópio de fibra óptica1-0,1Tabela 2 Taxas de deriva aleatória de vários tipos de giroscópios A faixa aproximada de taxa de deriva aleatória do giroscópio exigida por várias aplicações é mostrada na Tabela 3. O índice típico de precisão de posicionamento do sistema de navegação inercial é 1n milha/h (1n milha = 1852m), o que requer que a taxa de deriva aleatória do giroscópio deve atingir 0,01(°)/h, então o giroscópio com taxa de deriva aleatória de 0,01(°)/h é geralmente chamado de giroscópio de navegação inercial.AplicativoRequisitos para taxa de deriva aleatória de giroscópio/(°)·h-1Avaliar giroscópio no sistema de controle de vôo150-10Giroscópio vertical no sistema de controle de vôo30-10Giroscópio direcional no sistema de controle de vôo10-1Sistema de orientação inercial de mísseis táticos1-0,1Bússola giroscópica marítima, sistema de atitude de direção, posição lateral de artilharia, sistema de navegação inercial de veículo terrestre0,1-0,01Sistemas de navegação inercial para aeronaves e navios0,01-0,001Míssil estratégico, sistema de orientação inercial de mísseis de cruzeiro0,01-0,0005Tabela 3 Requisitos para taxa de desvio aleatório do giroscópio em diversas aplicações Comparação de três giroscópios MEMS de nível de navegaçãoA série MG da Micro-Magic Inc é um giroscópio MEMS de nível de navegação com alto nível de precisão para atender às necessidades de vários campos. A tabela a seguir compara faixa, instabilidade de polarização, passeio aleatório angular, estabilidade de polarização, fator de escala, largura de banda e ruído. MG-101MG-401MG-501Faixa dinâmica (graus/s)±100±400±500Instabilidade de polarização (graus/h)0,10,52Passeio aleatório angular (°/√h)0,0050,025~0,050,125-0,1Estabilidade de polarização (1σ 10s)(graus/h)0,10,52~5Tabela 4 Tabela de comparação de parâmetros de três giroscópios MEMS de nível de navegaçãoEspero que através deste artigo você possa compreender os indicadores técnicos do giroscópio MEMS de nível de navegação e a relação comparativa entre eles. Se você estiver interessado em mais conhecimento sobre o giroscópio MEMS, discuta conosco. MG502Giroscópio MEMS MG502  
  • Pesquisa sobre fusão segmentada do sistema de descoberta do poço norte do giroscópio MEMS
    Pesquisa sobre fusão segmentada do sistema de descoberta do poço norte do giroscópio MEMS Jan 14, 2025
    Pontos-chaveProduto: MEMS Giroscópio Borehole North Finding SystemPrincipais recursos:Componentes: Emprega giroscópios MEMS para busca ao norte, apresentando tamanho compacto, baixo custo e alta resistência a choques.Função: Utiliza um método aprimorado de duas posições (90° e 270°) e correção de atitude em tempo real para determinação precisa do norte.Aplicações: Otimizado para sistemas de perfuração de fundo de poço em ambientes subterrâneos complexos.Fusão de dados: Combina dados do giroscópio com correções locais de declinação magnética para cálculo do norte verdadeiro, garantindo uma navegação precisa durante a perfuração.Conclusão: Oferece capacidades de localização do norte precisas, confiáveis e independentes, ideais para poços e aplicações similares.O novo giroscópio MEMS é uma espécie de giroscópio inercial de estrutura simples, que apresenta as vantagens de baixo custo, tamanho reduzido e resistência a altas vibrações de choque. O giroscópio inercial de busca do norte pode completar o norte independente buscando todas as condições climáticas sem restrições externas e pode alcançar rapidez, alta eficiência, alta precisão e trabalho contínuo. Com base nas vantagens do giroscópio MEMS, o giroscópio MEMS é muito adequado para o sistema de localização norte de fundo de poço. Este artigo descreve a pesquisa de fusão segmentada do sistema de localização norte do poço giroscópio MEMS. A seguir, será apresentada a descoberta aprimorada do norte de duas posições, o esquema de descoberta do norte de fusão do poço giroscópio MEMS e a determinação do valor da descoberta do norte.Melhor localização do norte em duas posiçõesO esquema estático de busca ao norte de duas posições geralmente seleciona 0° e 180° como as posições inicial e final da busca ao norte. Após repetidos experimentos, a velocidade angular de saída do giroscópio é coletada e o ângulo final de busca ao norte é obtido combinando a latitude local. O experimento adotou o método de duas posições a cada 10°, coletando 360° da plataforma giratória, e um total de 36 conjuntos de dados foram coletados. Depois de calcular a média de cada conjunto de dados, os valores medidos da solução foram mostrados na Figura 1 abaixo.Figura 1 Curva de ajuste da saída do giroscópio de 0 a 360°Como pode ser visto na Figura 1, a curva de ajuste de saída é uma curva de cosseno, mas os dados experimentais e os ângulos ainda são pequenos e os resultados experimentais carecem de precisão. Experimentos repetidos foram conduzidos, e o ângulo de aquisição foi estendido para 0 ~ 660°, e o método de duas posições foi conduzido a cada 10° a partir de 0°, e os resultados dos dados foram mostrados na Figura 2. A tendência da imagem é cosseno curva, e há diferenças óbvias na distribuição dos dados. Na crista e no vale da curva cosseno, a distribuição dos pontos de dados é dispersa e o grau de ajuste à curva é baixo, enquanto no local com a maior inclinação da curva, o ajuste dos pontos de dados à curva é mais óbvio.Figura 2 Curva de ajuste da saída do giroscópio em duas posições 0~660°Combinado com a relação entre a amplitude de saída do azimute e do giroscópio na Figura 3, pode-se concluir que o ajuste dos dados é melhor quando o norte de duas posições é adotado em 90° e 270°, indicando que é mais fácil e preciso detectar o ângulo norte na direção leste-oeste. Portanto, 90°, 270°, em vez de 0° e 180°, são usados neste artigo como o norte de duas posições buscando posições de aquisição de saída do giroscópio.Figura 3 Relação entre a amplitude de saída do azimute e do giroscópioFusão de poço de giroscópio MEMS NorthfindingQuando o giroscópio MEMS é usado no sistema de localização norte do poço, ele se depara com um ambiente complexo e haverá ângulo de atitude variável com a perfuração da broca, então a solução do ângulo norte se torna muito mais complicada. Nesta seção, com base no aprimoramento do esquema de localização do norte de duas posições na seção anterior, é proposto um método para obter o ângulo de atitude controlando a rotação de acordo com as informações dos dados de saída, e o ângulo incluído com o norte é obtido. O fluxograma específico é mostrado na Figura 4.O giroscópio MEMS é transmitido ao computador superior através da interface de dados RS232. Conforme mostrado na Figura 4, após o ângulo norte inicial ser obtido pela busca do norte nas duas posições, a próxima etapa de perfuração durante a perfuração é realizada. Depois de receber instruções do norte, o trabalho de perfuração é interrompido. A saída do ângulo de atitude do giroscópio MEMS é coletada e transmitida ao computador superior. A rotação do sistema de busca ao norte do poço é controlada pela informação do Ângulo de atitude, e o Ângulo de rotação e o Ângulo de inclinação são ajustados para 0. O Ângulo de rumo neste momento é o Ângulo entre o eixo sensível e a direção norte magnética.Neste esquema, o ângulo entre o giroscópio MEMS e a direção norte verdadeira pode ser obtido em tempo real através da coleta de informações de ângulo de atitude.Figura 4 Fluxograma de localização do norte de fusãoO valor de busca do norte é determinadoNo esquema de descoberta do norte de fusão, a descoberta aprimorada do norte de duas posições foi realizada no giroscópio MEMS. Após a conclusão da descoberta do norte, a posição norte inicial foi obtida, o ângulo de rumo θ foi registrado e o estado de atitude inicial foi (0,0,θ), conforme mostrado na Figura 5 (a). Quando a broca está perfurando, o ângulo de atitude do giroscópio muda, e o ângulo de rotação e o ângulo de inclinação são regulados pela mesa rotativa, conforme mostrado na Figura 5 (b).Conforme mostrado na Figura 5 (b), ao perfurar a broca, o sistema recebe as informações do ângulo de atitude do instrumento de atitude e precisa avaliar os tamanhos do ângulo de rotação γ 'e do ângulo de inclinação β' e girá-los por meio do controle de rotação sistema para fazê-los girar para 0. Neste momento, os dados do ângulo do rumo de saída são o ângulo entre o eixo sensível e a direção norte magnética. O ângulo entre o eixo sensível e a direção norte verdadeiro deve ser obtido de acordo com a relação entre o norte magnético e a direção norte verdadeiro, e o ângulo norte verdadeiro deve ser obtido combinando o ângulo de declinação magnética local. A solução é a seguinte:θ’=Φ-∆φNa fórmula acima, θ 'broca e o ângulo de direção norte verdadeiro, ∆φ é o ângulo de declinação magnética local, Φ é a broca e o ângulo norte magnético.Figura 5 Mudança de atitude inicial e de perfuração ÂnguloO valor de busca do norte é determinadoNeste capítulo, o esquema de localização do norte do sistema subterrâneo de localização do norte do giroscópio MEMS é estudado. Com base no esquema de localização norte de duas posições, é proposto um esquema melhorado de localização norte de duas posições com 90° e 270° como posições iniciais. Com o progresso contínuo do giroscópio MEMS, o giroscópio MEMS em busca do norte pode alcançar uma descoberta independente do norte, como MG2-101, sua faixa de medição dinâmica é de 100°/s, pode funcionar no ambiente de -40 ° C ~+85 ° C , sua instabilidade de polarização é de 0,1°/h e o passeio aleatório da velocidade angular é de 0,005°/√h.Espero que você possa entender o esquema de localização do norte do giroscópio MEMS por meio deste artigo e espero discutir questões profissionais com você. MG502Giroscópio MEMS MG502  
  • Pesquisa sobre o padrão de deriva de constantes de instrumentos de giroscópio teodolito com temperatura
    Pesquisa sobre o padrão de deriva de constantes de instrumentos de giroscópio teodolito com temperatura Jan 14, 2025
    Pontos-chaveProduto: Sistema de Navegação Inercial Puro (INS) Baseado em IMUPrincipais recursos:Componentes: Usa acelerômetros e giroscópios MEMS para medição em tempo real de aceleração e velocidade angular.Função: Integra dados de posição e atitude iniciais com medições IMU para calcular posição e atitude em tempo real.Aplicações: Ideal para navegação interna, aeroespacial, sistemas autônomos e robótica.Desafios: Resolve erros de sensores, desvios cumulativos e impactos ambientais dinâmicos com métodos de calibração e filtragem.Conclusão: Fornece posicionamento preciso em ambientes desafiadores, com desempenho robusto quando combinado com sistemas auxiliares de posicionamento como GPS. A lei do desvio constante do instrumento com a temperatura de um giroteodolito é um fenômeno complexo, que envolve a interação de múltiplos componentes e sistemas dentro do instrumento. A constante do instrumento refere-se ao valor de referência de medição do giro-teodolito sob condições específicas. É crucial garantir a precisão e a estabilidade da medição.As mudanças de temperatura causarão o desvio das constantes do instrumento, principalmente porque as diferenças nos coeficientes de expansão térmica dos materiais causam mudanças na estrutura do instrumento, e o desempenho dos componentes eletrônicos muda com as mudanças de temperatura. Esse padrão de deriva costuma ser não linear porque diferentes materiais e componentes respondem de maneira diferente à temperatura.Para estudar o desvio das constantes do instrumento de um giroteodolito com a temperatura, geralmente é necessária uma série de experimentos e análises de dados. Isso inclui calibrar e medir o instrumento em diferentes temperaturas, registrar alterações nas constantes do instrumento e analisar a relação entre a temperatura e as constantes do instrumento.Através da análise de dados experimentais, a tendência das constantes do instrumento mudarem com a temperatura pode ser encontrada, e uma tentativa pode ser feita para estabelecer um modelo matemático para descrever esta relação. Tais modelos podem ser baseados em regressão linear, ajuste polinomial ou outros métodos estatísticos e são usados para prever e compensar desvios nas constantes do instrumento em diferentes temperaturas.Compreender o desvio das constantes do instrumento de um giroteodolito com a temperatura é muito importante para melhorar a precisão e a estabilidade da medição. Ao tomar medidas de compensação correspondentes, como controle de temperatura, calibração e processamento de dados, o impacto da temperatura nas constantes do instrumento pode ser reduzido, melhorando assim o desempenho de medição do giroteodolito.Deve-se notar que as regras específicas de desvio e os métodos de compensação podem variar dependendo dos diferentes modelos de giroteodolito e cenários de aplicação. Portanto, em aplicações práticas, medidas correspondentes precisam ser estudadas e implementadas de acordo com situações específicas.O estudo do padrão de deriva das constantes do instrumento do giroteodolito com a temperatura geralmente envolve monitorar e analisar o desempenho do instrumento sob diferentes condições de temperatura.O objetivo de tal pesquisa é entender como as mudanças na temperatura afetam as constantes do instrumento de um giroteodolito e possivelmente encontrar uma maneira de compensar ou corrigir esse efeito de temperatura.Constantes instrumentais geralmente se referem às propriedades inerentes de um instrumento sob condições específicas, como temperatura padrão. Para o giro-teodolito, as constantes do instrumento podem estar relacionadas à sua precisão de medição, estabilidade, etc.Quando a temperatura ambiente muda, as propriedades do material, a estrutura mecânica, etc. dentro do instrumento podem mudar, afetando assim as constantes do instrumento.Para estudar esse padrão de deriva, geralmente são necessárias as seguintes etapas:Selecione uma faixa de diferentes pontos de temperatura para cobrir os ambientes operacionais que um teodolito giroscópico pode encontrar.Faça múltiplas medições direcionais em cada ponto de temperatura para obter amostras de dados suficientes.Analise os dados e observe a tendência das constantes do instrumento em função da temperatura.Tente construir um modelo matemático para descrever essa relação, como regressão linear, ajuste polinomial, etc.Use este modelo para prever constantes do instrumento em diferentes temperaturas e possivelmente desenvolver métodos para compensar os efeitos da temperatura.Um modelo matemático pode ser assim:K (T) = a + b × T + c × T ^ 2 +…Entre eles, K(T) é a constante do instrumento na temperatura T, e a, b, c, etc. são os coeficientes a serem ajustados.Este tipo de pesquisa é de grande importância para melhorar o desempenho do giro-teodolito sob diferentes condições ambientais.Deve-se notar que métodos de pesquisa e modelos matemáticos específicos podem variar dependendo de modelos de instrumentos específicos e cenários de aplicação.ResumirA lei do desvio constante do instrumento com a temperatura de um giroteodolito é um fenômeno complexo, que envolve a interação de múltiplos componentes e sistemas dentro do instrumento. A constante do instrumento refere-se ao valor de referência de medição do giro-teodolito sob condições específicas. É crucial garantir a precisão e a estabilidade da medição.As mudanças de temperatura causarão o desvio das constantes do instrumento, principalmente porque as diferenças nos coeficientes de expansão térmica dos materiais causam mudanças na estrutura do instrumento, e o desempenho dos componentes eletrônicos muda com as mudanças de temperatura. Esse padrão de deriva costuma ser não linear porque diferentes materiais e componentes respondem de maneira diferente à temperatura.Para estudar o desvio das constantes do instrumento de um giroteodolito com a temperatura, geralmente é necessária uma série de experimentos e análises de dados. Isso inclui calibrar e medir o instrumento em diferentes temperaturas, registrar alterações nas constantes do instrumento e analisar a relação entre a temperatura e as constantes do instrumento.Através da análise de dados experimentais, a tendência das constantes do instrumento mudarem com a temperatura pode ser encontrada, e uma tentativa pode ser feita para estabelecer um modelo matemático para descrever esta relação. Tais modelos podem ser baseados em regressão linear, ajuste polinomial ou outros métodos estatísticos e são usados para prever e compensar desvios nas constantes do instrumento em diferentes temperaturas.Compreender o desvio das constantes do instrumento de um giroteodolito com a temperatura é muito importante para melhorar a precisão e a estabilidade da medição. Ao tomar medidas de compensação correspondentes, como controle de temperatura, calibração e processamento de dados, o impacto da temperatura nas constantes do instrumento pode ser reduzido, melhorando assim o desempenho de medição do giroteodolito.Deve-se notar que as regras específicas de desvio e os métodos de compensação podem variar dependendo dos diferentes modelos de giroteodolito e cenários de aplicação. Portanto, em aplicações práticas, medidas correspondentes precisam ser estudadas e implementadas de acordo com situações específicas.O estudo do padrão de deriva das constantes do instrumento do giroteodolito com a temperatura geralmente envolve monitorar e analisar o desempenho do instrumento sob diferentes condições de temperatura.O objetivo de tal pesquisa é entender como as mudanças na temperatura afetam as constantes do instrumento de um giroteodolito e possivelmente encontrar uma maneira de compensar ou corrigir esse efeito de temperatura.Constantes instrumentais geralmente se referem às propriedades inerentes de um instrumento sob condições específicas, como temperatura padrão. Para o giro-teodolito, as constantes do instrumento podem estar relacionadas à sua precisão de medição, estabilidade, etc.Quando a temperatura ambiente muda, as propriedades do material, a estrutura mecânica, etc. dentro do instrumento podem mudar, afetando assim as constantes do instrumento.Para estudar esse padrão de deriva, geralmente são necessárias as seguintes etapas:Selecione uma faixa de diferentes pontos de temperatura para cobrir os ambientes operacionais que um teodolito giroscópico pode encontrar.Faça múltiplas medições direcionais em cada ponto de temperatura para obter amostras de dados suficientes.Analise os dados e observe a tendência das constantes do instrumento em função da temperatura.Tente construir um modelo matemático para descrever essa relação, como regressão linear, ajuste polinomial, etc.Use este modelo para prever constantes do instrumento em diferentes temperaturas e possivelmente desenvolver métodos para compensar os efeitos da temperatura.Um modelo matemático pode ser assim:K (T) = a + b × T + c × T ^ 2 +…Entre eles, K(T) é a constante do instrumento na temperatura T, e a, b, c, etc. são os coeficientes a serem ajustados.Este tipo de pesquisa é de grande importância para melhorar o desempenho do giro-teodolito sob diferentes condições ambientais.Deve-se notar que métodos de pesquisa e modelos matemáticos específicos podem variar dependendo de modelos de instrumentos específicos e cenários de aplicação. MG502Giroscópio MEMS MG502  
Subscibe To Newsletter
Continue lendo, mantenha-se informado, inscreva-se e convidamos você a nos dizer o que pensa.
f y

Deixe um recado

Deixe um recado
Se você está interessado em nossos produtos e deseja saber mais detalhes, deixe uma mensagem aqui, responderemos o mais breve possível.
enviar

Lar

Produtos

Whatsapp

Contate-nos